Name of the Teacher- Sutapa Chakrabarty

Subject: Chemistry Class: Semester-2

Paper: DSC1BT: Organic Chemistry

Topic: Alcohols and Phenols

Part 3

Comments: Go through the marked portions carefully.

Reference: Chhaya Rasayan, Dadwasi by Maiti, Tewari,

Roy

গুরুষ্মার-টিম্যান বিক্রিয়া (Reimer-Tiemann reaction) ০ ফুনল, ক্লোরোফর্ম (CHCl₃) ও কস্টিক সোডার জলীয় দ্রবণের ত্রিল
 ত্রিল

 ত্রিল

 ত্রিল

 ত্রিল

 ত্রিল

 ত্রিল

 ত্রিল

 র্ম্প্রিক করলে মুখ্যত ০-হাইড্রক্সিবেঞ্ক্যালডিহাইড (স্যালিসাইল র্ম্প্রিক করলে মুখ্যত ০-হাইড্রক্সিবেঞ্ক্যালডিহাইড (স্যালিসাইল আর্মি আর্মি সমান্য পরিমাণ p-হাইড্রক্সিবেঞ্জালডিহাইড উৎপন্ন প্রিমান বিক্রিয়া (Reimann) র্মানিত্য্বিক্রয়াকে রাইমার-টিম্যান বিক্রিয়া (Reimer-Tiemann reaction) ব্যাপ্তিক্রাকে ব্রাইমার-টিম্যান বিক্রিয়া (Reimer-Tiemann reaction) রু। এই বিষয় বেঞ্জিন বলয়ে সরাসরি অ্যালডিহাইড (—CHO) গ্রুপ বুল। এর সাহায্যে বেঞ্জিন বলয়ে সরাসরি অ্যালডিহাইড (—CHO) গ্রুপ প্রকৌ করানো যায়।

ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া যাতে _{ভাই}ক্লোরোকার্বিন (: CCl₂) ইলেকট্রোফাইল হিসেবে কাজ করে।

ক্রারোফর্মের পরিবর্তে কার্বনটেট্রাক্রোরাইড (CCI₄) ব্যবহার করা হল মুখ্য বিক্রিয়াজাত পদার্থরূপে স্যালিসাইলিক অ্যাসিড উৎপন্ন হয়।

🞒 ৪. গ্যটারম্যান বিক্রিয়া (Gatermann reaction)

CamScanner

অনার্দ্র AlCl₃ অনুঘটকের উপস্থিতিতে ফেনলের সঞ্চো HCN এবং HCl-এর বিক্রিয়ায় উৎপন্ন ইমিনকে আর্দ্রবিশ্লেষিত করলে মুখ্যত p-হাইড্রন্সিবেঞ্জালডিহাইড উৎপন্ন হয়। এটি গ্যাটারম্যান বিক্রিয়া (Gatermann reaction) নামে পরিচিত।

ত্ম
$$\frac{\text{HCN/HCl}}{\text{AlCl}_3}$$
 $\frac{\text{OH}}{\text{CH}=\text{NH}}$ $\frac{\text{H}_2\text{O}}{\text{CHO}}$ $\frac{\text{CHO}}{\text{CHO}}$ $\frac{\text{$

💨 9. লেডেরার-ম্যানাসে বিক্রিয়া (Lederer-Manasse reaction)

অনুঘটকরূপে অ্যাসিড বা ক্ষারের উপস্থিতিতে ফেনলের সঞ্চো ফর্মালডিহাইডের বিক্রিয়ায় ফেনলের অর্থো- এবং প্যারা- অবস্থানের H-পরমাণু —CH₂OH গুণ দ্বারা প্রতিস্থাপিত হয়ে *o-* এবং মুখ্যত p-হাইড্রক্সিবেঞ্জাইল অ্যালকোহল উৎপন্ন করে। ফর্মালডিহাইডের পরিবর্তে অন্য কোনো অ্যালিফ্যাটিক বা অ্যারোমেটিক অ্যালডিহাইডও <u>ব্যবহা</u>র করা যেতে পারে। এটি লেডেরার-ম্যানাসে বিক্রিয়া (Lederer-Manasse reaction) নামে পরিচিত।

তবে বিক্রিয়াটি এখানেই শেষ হয়ে যায় না। এরপর বেঞ্জিন বলয়ে একাধিক —CH₂OH গ্রপ প্রবেশ করে এবং *বিস-হা*ইড্র**ক্সিমিথাইল** ফেনল ও *ট্রিস্*-হাইড্রক্সিমিথাইল ফেনল উৎপন্ন হয়। ক্ষার বা অ্যাসিডের উপস্থিতিতে এই ফেনলীয় অ্যালকোহলগুলি ধীরে ধীরে কনডেনসেশন বিক্রিয়ার মাধ্যমে একপ্রকার উচ্চ আণবিক ভরবিশিষ্ট পলিমার গঠন করে। এটি ফেনল-ফর্মালডিহাইড রেজিন বা বেকেলাইট (Bakelite) নামে পরিচিত। এটি এক ধরনের **থার্মোসেটিং প্লাস্টিক** যা রেডিও, টেলিফোন, ওয়াশিং মেশিন ইত্যাদির যন্ত্রাংশ তৈরিতে ব্যবহৃত হয়।

💨 10. থ্যালিক অ্যানহাইড্রাইডের সর্ঞো বিক্রিয়া

গাঢ় H₂SO₄ -এর উপস্থিতিতে ফেনল ও থ্যালিক অ্যানহাইড্রাইডের বিক্রিয়ায় অ্যাসিড-ক্ষারক নির্দেশক ফেনল্পথ্যালিন উৎপন্ন হয়।

11173 ফেনলের কিছু বিশেষ বিক্রিয়া

💨 1. বিজারণ (Reduction)

্রা হাইড্রোজেনেশন:_160°C উন্নতায় নিকেল অনুঘটকের ওপর দিয়ে ফেনল বাষ্প ও হাইড্রোজেনের মিশ্রণ চালনা করলে ফেনল 3 অণু হাইড্রোজেন গ্রহণের মাধ্যমে **সাইক্লোহেক্সানলে** বিজারিত হয়।

$$OH$$
 $($ ফেনল $)+3H_{2}$
 $\xrightarrow{Ni\, \xi^{ef}}$
 $($ সাইক্লোহেক্সানল $)$

<u>ii) বার্চ বিজ্ঞারণ:</u> ফেনলের সঞ্চো তরল অ্যামোনিয়া মাধ্যমে ধাতব সোডিয়ামের বিক্রিয়া ঘটালে ফেনলের অ্যারোমেটিক বলয়ের আংশিক

রসায়ন • XII & JEE

বিজ্ঞারণ ঘটে, ফলে একটি ইনল (enol) উৎপন্ন হয় [বার্চ বিজ্ঞারণ (Birch reduction)] যা দুত 3 সাইক্লোহেক্সিনোনে পরিণত হয়।

🏭 2. জারণ (Oxidation)

ফেনল একটি সক্রিয় পদার্থ এবং এটি সহজে ইলেকট্রন দান করতে পারে। তাই এটি জারক দ্রব্য দ্বারা সহজেই জারিত হয়। ক্ষারযুক্ত পটাশিয়াম পারম্যাঙ্গানেট দ্রবণ একে জারিত করে টার্টারিক অ্যাসিড, অক্সালিক অ্যাসিড ও ${
m CO}_2$ উৎপন্ন করে। এই জারণে ফেনলের বেঞ্জিন বলয় বিনম্ভ হয়। অন্যদিকে, ক্রোমিল ক্লোরাইড বা ক্রোমিক অ্যাসিড এবং ক্ষারীয় পটাশিয়াম পারসালফেট ফেনলকে জারিত করে যথাক্রমে p-বেঞ্জোকুইনোন ও p- **ডাইহাইড্রক্সিবেঞ্জিন** বা **কুইনল** উৎপন্ন করে। দ্বিতীয় বিক্রিয়াটিকে এলবস্ (Elbs) পারসালফেট জারণ বলে।

$$CrO_2Cl_2$$
 $O=$ $O+H_2Cl_2$ $O+H_2$ $O+$

বর্ণহীন ফেনল বায়ুর সংস্পর্শে জারিত হয়ে p- বেঞ্জোকুইনোনে (উৎপন্ন পদার্থগুলির মধ্যে অন্যতম) পরিণত হয়। p- বেঞ্জোকুইনোন ফেনলের সভেগ লাল রঙের যুত যৌগ ফেনোকুইনোন গঠন করে। এই রঙিন যৌগটির <mark>উপস্থিতির জন্য ফেনল গোলাপি-লাল বর্ণ</mark> ধারণ করে। তবে দীর্ঘদি<mark>ন আলোক</mark> ও বায়ুর উপস্থিতিতে ফেনল গাঢ় বাদামি বর্ণ ধারণ করে।

$$OH + O_2$$
 (বায়ু) — $O = O + H_2O$
ফেনল P -বেঞ্জোকুইনোন
$$O = OH - OH - OH - OH - OH$$
ফেনোকুইনোন (লাল)

🚵 3. লিবারম্যান বিক্রিয়া (Libermann reaction)

amScanner

ফেনল, সামান্য পরিমাণ NaNO_2 ও গাঢ় $\mathrm{H_2SO}_4$ -এর মিশ্রণকে জল দিয়ে লঘু করলে দ্রবণটি লাল বর্ণ ধারণ করে। দ্রবণটিকে ক্ষারীয় করলে দ্রবণের বর্ণ গাঢ় নীল হয়।

পরিচেছদ 11.6 ও 11.7 সংক্রান্ত ধ্রন্থ

- 1. আলকোহলের অন্নধর্মিতা জলের থেকে কম কেন্
- আালকোহলের অস্লবালতা
 1°, 2° এবং 3° আালকোহলকে ধাতব সোভিয়ামের সক্ষোনসারে সাজাও এবং কারণ ব্যাখ্যা করে।
- বৃধ্বির ক্রমানুসারে সাজাত র. জেরিভিটিনফের পাধ্বতির সাহায্যে কীভাবে ইথানল এবং ইথিজিয় ক্রাণ্ডাক্তি করা যায় ?
- মধ্যে পাথক্য করা নান.

 4. দৃটি বিক্রিয়ার উদাহরণ দাও যার একটিতে অ্যালকোহল নিইছিল্পী

 পোটনযন্ত অ্যালকোহল ইলেকট্রোফাইল হিস্কে দুটি বিক্রিয়ার ৬শাহর : ...-অপরটিতে প্রোটনযুক্ত আালকোহল ইলেকট্রোফাইল হিসেবে ক্রিটিতে প্রোটনযুক্ত আলকোহল প্রাপালেকি
- অপরাচতে ত্রাস্থ্য বিশ্ব বিশ্র বিশ্ব বিশ প্রোপানোয়িক আগতে, ১, _
 মিথাইল প্রোপানোয়িক অ্যাসিডকে ইথানলের সভাে ইতি কিমানসারে সাজাও এবং কারণ উদ্ভিত্ মিথাহল জ্বো নিজ্ঞান ক্রমানুসারে সাজাও এবং কারণ উদ্বেশ করে
- বিক্রিয়ার খাতিব। না বিক্রিয়ার কার্বার্থিকিকেশন বিক্রিয়ার কার্বার্থিকিকেশন বিক্রিয়ার কার্বার্থিকিকেশন কীভাবে প্রখান ক্রম্ম । — OH গ্রুপ অ্যালকোহলের H-এর সঙ্গো যুক্ত হয়ে জনের ইণ্ আন্তর্কাচনের আণবিক ভব ০০ ।
- OH খুন তালকে আলকোহলের আণবিক ভর 92। এর জিলহাইড্রিক অ্যালকোহলের আণবিক ভর 92। এর জিলহার জিলহ একাট পাণ্ডান্ত আনহাইড্রাইড এবং সোভিয়াম আসিটেট সহযোগে উত্তর্ভ হ অ।।নথংক্রাং আন্সিটাইলেশন ঘটালে ভর বৃদ্ধি পেয়ে 218 হয়। আনিরেরের
- ৪. প্রোপান 2 অল এবং 2 মিথাইলপ্রোপান 2 অল-এর মধ্যে জু H₂SO₄ -এর উপস্থিতিতে দ্রুত নিরুদিত হয় এবং কেন?
- 9. 3, 3 ডাইমিথাইল 2 বিউটানলকে গাঢ় H_2SO_4 সহযোগে ইত্ত্ব মুখ্য বিক্রিয়াজাত পদার্থ হিসেবে কোন্ অ্যালকিনটি পাওয়া যার 🙉
- 10. প্রদত্ত অ্যালকোহলগুলিকে আল্লিক ক্ষমতা বৃধির ক্রমানুসার সাত্র কারণ উদ্ধোখ করো: $\mathrm{CH_3CH_2OH}$, $\mathrm{CF_3CH_2OH}$, $\mathrm{CCl_3CH_3OH}$
- 11. অ্যালকোহল অপেকা ফেনলের অধিক আমিকতার কারণ বাধা হ
- 12. ফেনল সোডিয়াম বাইকার্বনেট দ্রবণে দ্রবীভূত হয় না কেন্
- 13. দ্রাব্যতা পরীক্ষার সাহায্যে কীভাবে ফেনল ও 2,4,6-ট্রাইনাইট্রেক মধ্যে পার্থক্য করা যাবে?
- 14. C_7H_7OH আণবিক সংকেতবিশিষ্ট দূটি সমাবয়বী যৌগ A জ মধ্যে প্রথমটি প্রশম FeCl₃ -দ্রবণের সঙ্গে বিক্রিয়ায় বেগুনি বর্ণ গ্রী কিন্তু দ্বিতীয়টি করে না। A এবং B-কে শনান্ত করো।
- 15. আল্লিকতা বৃশ্বির ক্রমানুসারে সাজাও এবং কারণ উল্লেখ করো:(i) (ii) p- ক্রেসল (iii) p- নাইট্রোফেনল (iv) m- নাইট্রোফেনল
- 16. o- নাইট্রোফেনল এবং p- নাইট্রোফেনলের মিশ্রণ থেকে মৌগ কীভাবে পৃথক করবে?
- 17. নীচের যৌগ জোড়াগুলির মধ্যে কোন্টি অধিক অম্লধর্মী এবং জে (i) ফেনল এবং সাইক্লোহেক্সানল (ii) o- নাইট্রোফেনল এবং p-নাইট্র (iii) 3, 5 -ডাইমিথাইল -4 - নাইট্রোফেনল ও 4 -নাইট্রোফেনল (iv) অ্যাসিড এবং ফর্মিক অ্যাসিড।
- <mark>18.</mark> অ্যালকোহলের মতো ফেনলগুলিকে H₂SO₄-এর উপিখিতিতে ^{রুর} অ্যাসিডের সঙ্গো বিক্রিয়া ঘটিয়ে এস্টারে পরিণত করা যায় না জে
- ফেনলের ব্রোমিনেশন বিক্রিয়া লুইস অ্যাসিডের অনুপিথিতিতে ছট
- পিকরিক অ্যাসিড কী? একে অ্যাসিড বলা হয় কেন? ফেনল খেকে পিকরিক অ্যাসিড প্রস্তুত করা যাবে?
- আ্যাসপিরিন কী? ফেনল থেকে কীভাবে অ্যাসপিরিন গ্রন্থ কর অ্যাসপিরিনের ব্যবহার উল্লেখ করো।
- প্রদত্ত যৌগগুলির মধ্যে কোন্টির সাহায্যে ফেনল ও সাইক্লোছেলনি পার্থক্য করা যাবে: Na₂CO₃, CH₃COCl, NaOH?

_OH গুপের প্রতিম্থাপন সহজে ঘটে না কেন? ্রেল্টিয়ান বিক্রিয়ায় অংশগ্রহণকারী ইলেকট্রোফাইলটি কী? এটির ক্রিল্টেট্রল হিসেবে আচরণের কারণ কী? রুষ্টিমান হিলাবে আচরণের কারণ কী?

্রার্কিনের মিশ্রণ থেকে ওদের কীভাবে পৃথক করবে?

সংশা অভিরিক্ত ব্রোমিন-জলের চিত্র ্রেলি স্লেল অতিরিক্ত ব্রোমিন-জলের বিক্রিয়ায় উৎপদ্ম যৌগ ক্রেলি ্রেম₂Br₄O এর গঠনসংকেত লেখো।

্বা¹2⁰¹⁴ মার্ক্সির্ক দ্বীর্গসময় আলোক ও বায়ুর উপস্থিতিতে রাখলে এর বর্ণের কীর্ণ মার্ক্সক্র হয় এবং কেন? পুৰিবৰ্তন হয় এবং কেন?

শ্নাক্তকরণ এবং পার্থক্য নিরুপণ (Identification and Distinction)

1°, 2° ৪ 3° অ্যালকোহলের মধ্যে পার্থক্য নিরূপণ (Distinction between 1°, 2° and 3° alcohols)

🔰 ! नृकाम श्रीका (Lucas test)

ক্রাস বিকারক হল গাঢ় HCl ও অনার্দ্র ZnCl₂-এর মিশ্রণ। প্রিক্ষীয় অ্যালকোহলে ওই বিকারক যোগ করে ঝাঁকানো হয়। প্রাম আনকোহলগুলি অ্যালকিল ক্লোরাইডে পরিণত হয় এবং উৎপন্ন অ্যালকিল প্রাইড বিক্রিয়া মাধ্যমে অদ্রাব্য বলে দ্রবণ ঘোলাটে হয়। এই পরীক্ষা ব্রন্মার তরল আলিকোহলের ক্ষেত্রেই প্রযোজ্য। ছয় বা ছয়ের বেশি র্ফা প্রমাণুযুক্ত অ্যালকোহলগুলির ক্ষেত্রে লুকাস পরীক্ষাটি প্রযোজ্য নয়, রুর ধই আালকোহলগুলি লুকাস বিকারকে অদ্রাব্য।

্রা 1° অ্যালকোহলের ক্ষেত্রে সাধারণ উয়তায় विक्रिया घटि ना वटल जवटनंत रघालाटि (turbid) ভाव আসে ना। দ্রবণকে উত্তপ্ত করলে বা-ক্রয়েক ঘন্টা রেখে দিলে দ্রবণ ঘোলাটে হয়।

» বৃত্তিকুম: বেঞ্জাইল অ্যালকোহল $\mathrm{C_6H_5CH_2OH}$ এবং অ্যালাইল খ্যানকোহল ($\mathrm{CH_2} = \mathrm{CHCH_2OH}$), প্রাইমারি খ্যালকোহল হওয়া সত্ত্বেও এই পরীক্ষায় অতি দ্রুত সাড়া দেয়।

② অাদুকক্বিচরক: এক্ষেত্রে বিক্রিয়াটি ধীরগতিতে সম্পন্ন হয় বলে ম্বেলাটৈ ভাব আসতে 5 মিনিট সময় লাগে।

$$R_2$$
CHOH (2°) $\xrightarrow{\text{খনার্প ZnCl}_2}$ R_2 CHCl (খ্যালকিল ক্লোরাইড)

3° শ্লোলকোহল: এক্ষেত্রে বিক্রিয়াটি দ্রুতগতিতে ঘটে বলে দ্রবণ তংক্ষণাৎ ঘোলাটে হয়ে যায়।

সূত্রাং, কোনো অ্যালকোহলের নমুনায় লুকাস বিকারক যোগ করে ৰীকালে যদি দ্ৰবণটি প্ৰায় সঞো সঞো ঘোলাটে হয়ে যায় তাহলে নমুনাটি ^{3°} प्णानत्कार्न, यिन जन्नविष्ठ 5 मिनिर्छेत मरश्य प्यानार्छे रुरा यात्र, ^{তাহলে} নমুনাটি 2° অ্যালকোহল এবং যদি দ্ৰবণটি স্বচ্ছ থাকে তাহলে ^{নমুনাটি} 1° অ্যালকোহল।

লুকাস পরীক্ষায় সংঘটিত বিক্রিয়াটি S_N1 মেকানিজমের মাধ্যমে ঘটে এবং এর প্রথম ধাপে (গতি বা হার নির্ণায়ক ধাপ) একটি কার্বোক্যাটায়ন উৎপন্ন হয়। যেহেতু 3° কার্বোক্যাটায়ন সর্বাধিক স্থিতিশীল, তাই 3° আলকোহল লুকাস বিকারকের সঞ্চো দুত বিক্রিয়া করে। 2° কার্বোক্যাটায়নের স্থিতিশীলতা অপেক্ষাকৃত কম বলে 2° আালকোহল লুকাস বিকারকের সঙ্গো অপেক্ষাকৃত ধীরে বিক্রিয়া করে। 1° কার্বোক্যাটায়নের **স্থিতিশীলতা** সবচেয়ে কম বলে 1° অ্যালকোহল সাধারণ উন্নতায় লুকাস বিকারকের সঙ্গে বিক্রিয়া করে না, অর্থাৎ লুকাস পরীক্ষায় সাড়া দেয় না।

$$R - OH + ZnCl_2 \longrightarrow R - O - ZnCl_2 \longrightarrow R + HO - ZnCl_2$$
 আলকোহল $H - Cl_R - Cl_R - Cl_R$ আলেকাহল কোনাইড (অস্ত্রাবা)

বেঞ্জাইলু এবং অ্যালাইল অ্যালকোহলু রেজোনেন্স-স্থিতিশীল কার্বোক্যাটায়ন $m C_6H_5\ddot{C}H_2$ এবং $m CH_2$ =CH $-\ddot{C}H_2$ গঠন করে বলে $m 1^\circ$ অ্যালকোহল হওয়া সত্ত্বেও এরা অতি দুত এই পরীক্ষায় সাড়া দেয়।

$$\left[\begin{array}{c} \mathrm{CH}_2 \! = \! \mathrm{CH} \! - \! \stackrel{\oplus}{\mathrm{CH}}_2 \longleftrightarrow \stackrel{\oplus}{\mathrm{CH}}_2 \! - \! \mathrm{CH} \! = \! \mathrm{CH}_2 \\ & \text{আंगहिन कांग्रासन} \end{array} \right]$$

💨 2. জারণ পদ্ধতি (Oxidation method)

এই পম্বতিতে অ্যালকোহলকে $\mathrm{Na_2Cr_2O_7/H_2SO_4}$ ${
m K_2Cr_2O_7/H_2SO_4}$ দ্বারা জারিত করা হয় এবং জারণের ফলে দ্রবণের বর্ণের পরির্বতন লক্ষ করা হয়। এরপর বিশেষ পরীক্ষার সাহায্যে উৎপন্ন পদার্থগুলিকে শনাক্ত করা হয়।

i 1°⁄ব্যালকোহল: সমসংখ্যক C-পরমাণুযুক্ত আালডিহাইড বা কার্বক্সিলিক অ্যাসিড উৎপন্ন হয় এবং দ্রবণের বর্ণ কমলা থেকে নীলাভ-সবুজ হয়।

$$RCH_2OH \xrightarrow{K_2Cr_2O_7/H_2SO_4} RCHO \xrightarrow{K_2Cr_2O_7/H_2SO_4} RCOOH$$
 (1°) আগড়িহাইড কার্বন্ধিনিক অ্যাসিড

উৎপন্ন অ্যালডিহাইডকে টোলেন্স বিকারকের সাহায্যে এবং অ্যাসিডকে এস্টারিফিকেশন বিক্রিয়ার সাহায্যে শনাক্ত করা যায়।

ii / 2° অ্যালকোহল: সমসংখ্যক কার্বন পরমাণুযুক্ত কিটোন উৎপন্ন হয় এবং দ্রবণের বর্ণ কমলা থেকে নীলাভ-সবুজ হয়।

$$R_2$$
CHOH (2°) $\xrightarrow{K_2$ Cr $_2$ O $_7$ /H $_2$ SO $_4$ R — C — R (किछोन)

উৎপন্ন কিটোন ব্র্যাডির বিকারকের সঙ্গে বিক্রিয়ায় হলুদ বা লাল অধঃক্ষেপ উৎপন্ন করে।

iii) 3° জ্ঞ্যালকোহল: সাধারণ অবস্থায় জারিত হয় না।

$$m R_3COH~(3^\circ) \xrightarrow{K_2Cr_2O_7/H_2SO_4}$$
 ডাইক্রোমেটের কমলা বর্ণের কোনো পরিবর্তন হয় না

কমলা বর্ণের ডাইক্রোমেট [Cr(VI)] 1° বা 2° অ্যালকোহলকে জারিত করে <mark>এবং নিজে বিজারিত হয়ে ক্রোমিক লবলে [Cr(III)] পরিণত হয়।</mark> উদাহরণ 3CH3CH2OH + 2K2Cr2O7 + 8H2SO4 $3CH_3COOH + 2Cr_2(SO_4)_3 + 2K_2SO_4 + 11H_2O$ অ্যাসিটিক অ্যাসিড (নীলাভ-সবুজ)

💨 3. ভিক্টর মায়ারের পরীক্ষা (Victor Meyer's test)

এই পরীক্ষায় অ্যালকোহলকে প্রথমে নাইট্রো যৌগে পরিণত করা হয়। উৎপন্ন নাইট্রো যৌগের সঞ্গে নাইট্রাস অ্যাসিডের বিক্রিয়া ঘটিয়ে মিশ্রণে NaOH দ্রবণ যোগ করা হয়। উৎপন্ন দ্রবণের বর্ণ পর্যবেক্ষণের মাধ্যমে তিন শ্রেণির অ্যালকোহলকে শনাক্ত করা হয়।

 1° আলকোহল: $RCH_2OH \xrightarrow{P/I_2} RCH_2I \xrightarrow{AgNO_2} RCH_2NO_2$

 \mathbf{ii} 2° অ্যালকোহল: $\mathbf{R_2CHOH} \xrightarrow{\mathbf{P/I_2}} \mathbf{R_2CHI} \xrightarrow{\mathbf{AgNO_2}} \mathbf{R_2CHNO_2}$ নীল রঙের দ্রবণ $\xleftarrow{\mathrm{NaOH}\,\mathrm{E}}$ বণ $\mathrm{R_2C} \overset{\mathrm{NO}_2}{\overset{\mathrm{N}}{\sim}}$ সিউডোনাইট্রোল (নীল)

সিওডোনাইট্রোল যৌগটি NaOH দ্রবণে অদ্রাব্য এর নিজস্ব নীলবর্ণের জন্যই দ্রবণ নীল দেখায়।

 3° আলিকোহল: $R_3COH \xrightarrow{P/I_2} R_3C-I \xrightarrow{AgNO_2} R_3C-NO_2$ বৰ্ণহীন দ্ৰবৰ্ণ $\frac{\mathrm{NaOH}\;\mathrm{E}$ বৰণ নাইট্ৰো যৌগে lpha-H পরমাণু HNO_2 না থাকায় বিক্রিয়া ঘটে না

11.8.2 অ্যালকোহলের আয়োডোফর্ম পরীক্ষা (lodoform test of alcohols)

CH3CH(OH)-श्रू शिविभिष्ठे प्राानरकाश्नश्रीनरक प्रारागिष्ठ ७ NaOH -এর জলীয় দ্রবণ সহযোগে উত্তপ্ত করলে হলুদ রঙের আয়োডোফর্ম অধঃক্ষিপ্ত হয়। পরীক্ষাটি আয়োডোফর্ম পরীক্ষা নামে পরিচিত।

$$R-CH-CH_3$$
 $I_2/NaOH$ দ্রবণ $CHI_3\downarrow+RCOONa$ আনোকোহল আনোডোফর্ম (হলুদ)

্রা R = H হলে অ্যালকোহলটি হয় CH3CH2OH (ইথানল)।

উদাহরণ ইথানল হল একমাত্র প্রাইমারি অ্যালকোহল যেটি আয়োডোফর্ম বিক্রিয়ায় সাড়া দেয়।

ii) R= অ্যালকিল গ্রুপ হলে অ্যালকোহলটি হবে অ্যালিফ্যাটিক সেকেন্ডারি অ্যালকোহল।

Scanned with CamScanner

উদাহরণ CH3CH(OH) গ্রপযুক্ত সব অ্যালিফাটিক হরণ $CH_3CH_1OM_2$ আরোডোফর্ম বিক্রিয়ায় সাড়া দেয়। যেমন— $CH_3CH_1OM_2$ আলা. $CH_3CH_2CH_1OM_2$ আন্নোডোক্স ব্যাস্ত্র স্থান এই বিক্রিয়ায় সাড়া দেয়া বিক্র (খ্রোসাল-2 প্রভৃতি 2° অ্যালকোহলগুলি এই বিক্রিয়ায় সাড়া _{(দয়।} প্রভৃতি 2° আন্তর্ন প্রাণ হলে অ্যালকোহলটি হয় একটি আলকোহল।

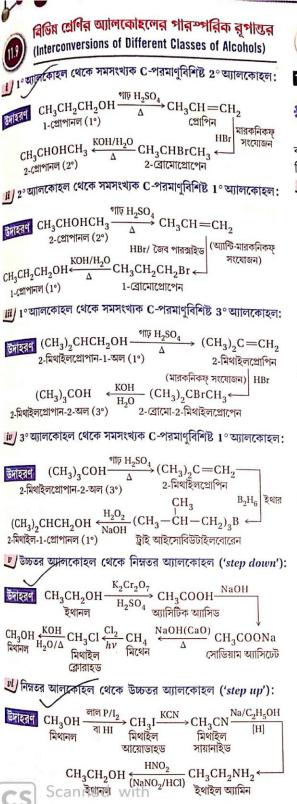
হরণ $CH_3UD(V-1, 2)$ আরোডোফর্ম বিক্রিয়ায় সাড়া আরোজে অ্যালকোহল-ই আয়োডোফর্ম বিক্রিয়ায় সাড়া দেয়। দেয়। দেয়। CH3CH(OH)-ध्रुभगुक C₆H₅CH(OLI)---র
সূতরাং আয়োডোফর্ম পরীক্ষার সাহায্যে ইথানল ও মিথানাদের
সূতরাং আয়োডোফর্ম পরীক্ষার সাহায়ে এবং 1-ফিনাইলটগান্তর মূ

সূতরাং আন্নোত।

1-প্রোপানল ও 2-প্রোপানলের মধ্যে এবং 1-ফিনাইলইথানি ।

ত্যাপানল ও করা যায়।

11.8.3 অ্যালকোহল ও ফেনলের মধ্যে পার্থক্য নিরূপণ (Distinction between alcohols and phenols)


নিম্নলিখিত পরীক্ষাগুলির সাহায্যে অ্যালকোহল ও ফেন্ট্রে ১ পার্থক্য নির্ণয় করা যায়:

- ্রাব্যস্ত ক্রেন্স পরীক্ষা: ফেনলগুলি নীল লিটমাসকে লাল কর 🙀 অ্যালকোহলগুলি করে না।
- ্রা ক্রেরিক ক্রোরাইড পরীক্ষা: ফেনলগুলি প্রশম ফেরিক ক্রের্ দ্রবণের সজেগ বিক্রিয়ায় বেগুনি, নীল বা সবুজ রং সৃষ্টি করে নি অ্যালকোহলগুলি করে না।
- ্য়া /ব্রোমিন -জল পরীক্ষা: ফেনলগুলি ব্রোমিন-জলের সঙ্গে বিক্রিয়ার স অধঃক্ষেপ উৎপন্ন করে কিন্তু অ্যালকোহলগুলি করে না।
- iv কাপালিং বিক্রিয়া: মৃদু কারীয় দ্রবণে শীতল অবস্থায় ফেল্ফ বঞ্জিনভায়াজোনিয়াম ক্লোরাইডের সঙ্গে বিক্রিয়ায় হল্দ বা কর বর্ণের অ্যাজো-রঞ্জক গঠন করে কিন্তু অ্যালকোহলগুলি করে ন।
- ্

 লিবারম্যান পরীক্ষা: ফেনল, সোডিয়াম নাইট্রাইট ও গাঢ় H,50, এর মিশ্রণকে জল দিয়ে লঘু করলে দ্রবণটি লাল বর্ণ ধারণ হয় দ্রবণটিকে ক্ষারীয় করলে এটি নীল বর্ণ দেখায়। অ্যালকোল লিবারম্যান পরীক্ষায় সাডা দেয় না।

পরিচ্ছেদ 11.8 সংক্রান্ত প্রশ

- নিম্নলিখিত যৌগ জোড়াগুলির মধ্যে কীভাবে পার্থক্য করবে? (a) ফেনল এবং বেঞ্জাইল অ্যালকোহল (b) CH3CH2CH2OH প CH2=CH-CH2OH (c) ইথানল এবং মিথানল (d) 2-প্রোপানন জ ইথানল (e) টার্ট-বিউটাইল অ্যালকোহল এবং 1-বিউটানল (f) ফেল জ 2, 4 -ডাইনাইটোফেনল।
- 2. নিম্নলিখিত কোন্ যৌগগুলি আয়োডোফর্ম বিক্রিয়ায় সাড়া দেয়/দেয় উত্তরের সপক্ষে যুক্তি দাও।
 - (a) CH₃CH₂CHOHCH₂CH₃ (b) C₆H₅CHOHCH₂I (c) CH₃CH₂CHOHCHOHCH₃ (d) C₆H₅CHOHCH₂CH₃
- 3. একটি অ্যালকোহলের সঙ্গে I₂/NaOH এর বিক্রিয়ায় আ<mark>য়োডোফ্র</mark> সোডিয়াম প্রোপানোয়েট উৎপন্ন হয়। অ্যালকোহলটিকে শনান্ত করে।

CamScanner

বাণিজ্যিকডাবে গুরুত্বপূর্ণ কিছু অ্যালকোঁছল ও ফেনল (Some Commercially Important Alcohols & Phenols)

11.10.1 মিথাইল অ্যালকোহল বা মিথানল (Methanol)

💨 মিথানলের শিল্পোৎপাদন (Manufacture of methanol)

কাঠের অন্তর্ধুম পাতনের ফলে প্রাপ্ত তরলে প্রথম এটি পাওয়া যায় বলে মিথাইল অ্যালকোহল উড্ স্পিরিট (wood spirit) নামেও পরিচিত। নিম্নলিখিত পশ্বতি দুটির সাহায্যে এর শিক্ষোৎপাদন করা হয়।

্রাটার গ্যাস থেকে: বিশুষ্প ওয়াটার গ্যাসের সঞ্চো এর অর্ধেক পরিমাণ H₂ মিশিয়ে এই গ্যাস-মিশ্রণকে 200-300 atm চাপে 300-400°C উয়তায় উত্তপ্ত কপার অক্সাইড, জিংক অক্সাইড ও ক্রোমিয়াম অক্সাইড (CuO + ZnO + Cr₂O₃) অনুঘটকের ওপর দিয়ে চালনা করলে মিথাইল অ্যালকোহল বাষ্প উৎপন্ন হয়। এই পাধ্বতিতে প্রায় 99% বিশুষ্প মিথানল পাওয়া যায়।

$$({
m CO} + {
m H}_2) + {
m H}_2 \xrightarrow{{
m CuO+ZnO+Cr}_2{
m O}_3} {
m CH}_3{
m OH}$$
 ওয়াটার গ্যাস

লোহিততপ্ত কোকের ওপর দিয়ে স্টিম চালনা করলে ওয়াটার গ্যাস (প্রায় সম-আয়তন CO এবং H₂-এর মিশ্রণ) উৎপন্ন হয়।

ii) মিথেনের জারণ দ্বারা: মিথেন ও অক্সিজেন গ্যাসকে 9:1 আয়তন অনুপাতে মিশিয়ে মিগ্রণটিকে 100 atm চাপে এবং 200-250°C উয়তায় কপার নলের মধ্য দিয়ে চালনা করলে মিথেনের নিয়মিত জারণের ফলে মিথাইল অ্যালকোহল উৎপন্ন হয়। এই জারণে নলের কপার ধাতু অনুষ্টক হিসেবে কাজ করে।

$$2\text{CH}_4 + \text{O}_2 \xrightarrow{\text{100 atm., 200-250°C}} \text{(কপার নলের মধ্য দিয়ে চালনা)} \rightarrow \text{2CH}_3\text{OH}$$
 মিথানল

💨 মিথানলের ধর্ম (Properties of methanol)

মিথানল একটি বর্ণহীন, বিশিষ্ট গন্ধযুক্ত, উদ্বায়ী, অতীব দাহ্য, প্রশম তরল পদার্থ। এর স্ফুটনাঙ্ক 64.5°C এবং গলনাঙ্ক –97.8°C। বেশিরভাগ জৈব দ্রাবকে মিথানল দ্রবীভূত হয়। জলের সঙ্গে এটি যেকোনো অনুপাতে মেশে। এটি একটি বিষাক্ত তরল যা পান করলে মানুষ অন্ধ বা উন্মাদ হয়ে যেতে পারে, এমনকি মৃত্যুও ঘটতে পারে। তাই এটি মদজাতীয় পানীয় হিসেবে ব্যবহৃত হয় না। মিথানল অ্যালকোহলের সব সাধারণ বিক্রিয়াগুলিতে সাড়া দেয়।

💨 মিথানলের ব্যবহার (Uses of methanol)

া শিল্পে রং, বার্নিশ, সেলুলয়েড, সিমেন্ট, চর্বি প্রভৃতির সুলভ দ্রাবকর্পে মিথানল প্রচুর পরিমাণে ব্যবহৃত হয়। ② প্লাঙ্গ্টিক শিল্পে একটি অত্যন্ত গুরুত্বপূর্ণ কাঁচামাল হল ফর্মালডিহাইড। এর পণ্যোৎপাদনে মিথানল প্রচুর পরিমাণে ব্যবহৃত হয়। ③ পেট্রোলের বিকল্প হিসেবে এর ব্যবহার আছে। ④ শীতপ্রধান দেশে মোটরগাড়ির রেডিয়েটরে জলের পরিবর্তে হিমাঙ্করোধক (antifreeze)-রূপে জল ও মিথানলের মিশ্রণ ব্যবহৃত হয়। ⑤ হিথাইল অ্যালকোহলকে পানের অ্যোণ্য (denature) করার জন্য মিথানল ব্যবহৃত হয়। মিথানলযুক্ত ইথানলকে মিথিলেটেড স্পিরিট বলে।

ক্যানোর জন্য মেটরগাড়ির জ্বালানি হিসেবে শুধু
ক্রিরের্চ পেট্রোল, ইথানল এবং রেঞ্জিনের (বা ইথার, টেট্রালিন
ক্রিরের্চ পিরের্চর করা হয়। আলকোহল পেটোলের সঙ্গে
ক্রির্বাচ মিশ্রণ ব্যবহার করা হয়। আলকোহল পেটোলের সঙ্গে
ক্রির্বাচ মিশ্রণ ব্যবহার করা হয়। শক্তির উৎস হিসেবে
ক্রের্বা বলি তৃতীয় উপাদানটি যোগ করা হয়। শক্তির উৎস হিসেবে
ক্রের্বা বলি তৃতীয় উপাদানটি যোগ করা হয়। শক্তির উৎস হিসেবে
ক্রের্বালিকারেল মিশ্রিত এই পেট্রোলকে পাওয়ার আলকোহল বলে।
ক্রির্বার্টেক্টরা ডিনেচার্ড ম্পিরিট (Methylated or Denatured spirit):
ক্রির্বার্টিকের্বা ডিনেচার্ড ম্পিরিটকে পানের অযোগ্য করার জন্য
ক্রের্বার্থি রের্বাক্ত মিথানল (10 ভাগ পর্যন্ত) এবং সামান্য উৎকট স্বাদযুক্ত
ক্রার্থ, যেমন—পিরিডিন, কাওকোসিন, ন্যাপথা প্রভৃতি মেশানো হয়।
ক্রির্থানলযুক্ত এই রেকটিফায়েড স্পিরিটকে মিথিলেটেড স্পিরিট বলে।

1103 (क्निल (Phenol)

🜒 ফেনলে শিল্পোৎপাদন (Manufacture of phenol)

আলকাতরার অন্তর্ধুম পাতনের ফলে প্রাপ্ত পাতিতাংশ মধ্যম তেল হতে এবং মূলত কিউমিন থেকে ফেনলের শিল্পোৎপাদন করা হয় (বিশদে জুনার জনা 11.4.2 নং পরিচ্ছেদ দ্যাখো)।

🕼 ফেনলের ব্যবহার (Uses of phenol)

(বিস্ফোরক), ফেনলপ্থ্যালিন (নির্দেশক), সাইক্রোহেক্সানল (রবার ও নাইট্রোসেলুলোজের দ্রাবক) ইত্যাদি গুরুত্বপূর্ণ রাসায়নিক দ্রব্য প্রস্তৃতিতে ফেনল ব্যবহৃত হয়।
ভীবাণুনাশক ধর্মের জন্য বিভিন্ন সাবান (কার্বলিক সাবান), লোশন ও জীবাণুনাশক তরল প্রস্তৃতিতে ফেনল ব্যবহৃত হয়।

া কাঠ সংরক্ষণেও ফেনলের ব্যবহার আছে।

পরিচ্ছেদ 11.9 ও 11.10 সংক্রান্ত প্রশ্ন

- 1. কীভাবে রুপান্তর করবে?
 - (i) 2 -(প্রাপানল → 1 -(প্রাপানল

ansaledoled to Polat on at

- (ii) 2 -মিগাইলপ্রোপান 2 অল → 2 -মিগাইলপ্রোপান 1 অল
- (iii) মিথানল → ইথানল
- (iv) 2- গ্রোপানল → ইথানল
- 2. উড় স্পিরিট কীং ওয়াটার গ্যাস থেকে কীভাবে এটি প্রস্তুত করা হয়ং
- রেকটিফায়েড স্পিরিট কাকে বলে? রেকটিফায়েড স্পিরিট থেকে কীভাবে
 নির্জন অ্যালকোহল (absolute alcohol) প্রস্তুত করা যায়?
- 4. নির্জল অ্যালকোহল থেকে অতিশুদ্ধ অ্যালকোহল কীভাবে প্রস্তুত করা যায় ?
- পাওয়ার অ্যালকোহল ও মিথিলেটেড স্পিরিট বলতে কী বোঝ ?
- মদজাতীয় পানীয় প্রস্তৃতিতে মিথানল ও ইথানলের মধ্যে কোন্টি ব্যবহৃত
 হয় এবং কেন?
- প্লাস্টিক শিল্পের গুরুত্বপূর্ণ কাঁচামাল ফর্মালডিহাইড প্রস্তুত করার জন্য কোন্ আলকোহল ব্যবহার করা হয়?
- 8. ফেনলের দৃটি গুরুত্বপূর্ণ ব্যবহার উল্লেখ করো।

ইথারসমূহ (Ethers)

ইথারসমূহের প্রস্তৃতি (Preparation of Ethers)

আলকোহল থেকে (From alcohols)

🕼 1.আলকোহলের নিরুদন (Dehydration of alcohol) দ্বারা

আাসিড-অনুষ্টকীয় নিরুদন: প্রোটনিক আাসিড (গাঢ় H_2SO_4 বা H_3PO_4)-এর উপস্থিতিতে আলকোহল নিরুদিত হয়ে আলকিন বা ইথার উৎপন্ন করতে পারে। তবে কোন্টি উৎপন্ন হবে তা বিক্রিয়ার শর্তের ওপর নির্ভর করে। যেমন— আলকোহলকে অতিরিক্ত গাঢ় H_2SO_4 সহযোগে 165-170°C তাপমাত্রায় উত্তপ্ত করলে মুখ্যত আলকিন উৎপন্ন হয়, কিন্তু অতিরিক্ত আলকোহলকে গাঢ় H_2SO_4 সহযোগে 140°C তাপমাত্রায় উত্তপ্ত করলে মুখ্যত ইথার উৎপন্ন হয়। সুতরাং, ইথার প্রস্তুতির জন্য অপেক্ষাকৃত কম তাপমাত্রায় অতিরিক্ত আলকোহলের সঙ্গো আসিডের বিক্রিয়া ঘটানো প্রয়োজন।

 প্রথম ধাপ: আলকোহলের প্রেটনেশনের ফলে প্রেটনিত আলকোহল বা অয়োনিয়াম আয়ন গঠিত হয়।

$${
m CH_3CH_2}$$
— ${
m \ddot{O}H}$ + ${
m H}$ \longrightarrow ${
m CH_3CH_2}$ — ${
m \ddot{O}H_2}$ (1°) প্রোটনিত-আলকোহল বা অক্সোনিয়াম আয়ন

ছিতীয় ধাপ: অপর আলকোহল অণু ছারা প্রোটনিত আলকোহলে
 ১৯০০ আরুমণ এবং প্রোটনিত ডাইইথাইল ইথার বা ইথক্সিইথেন গঠন।

⊚ তৃতীয় ধাপ: প্রোটন ত্যাণের মাধ্যমে ডাইইথাইল ইথার গঠন।

উৎপন্ন ইথারের পরিমাণ কোন্ শ্রেণির অ্যালকোহল থেকে প্রস্তুত করা হয় তার ওপর নির্ভর করে।

- 🔱 প্রাইমারি অ্যালকোহলের ক্ষেত্রে মুখ্যত ইথার উৎপন্ন হয় এবং সঞ্চো সামান্য পরিমাণ অ্যালকিন উৎপন্ন হয়। সুতরাং, এই শ্রেণির অ্যালকোহল ইথার প্রস্তৃতির জন্য উপযুক্ত।
- 🔱 সেকেন্ডারি অ্যালকোহলের ক্ষেত্রে বিক্রিয়াটি E1/S_N1 মেকানিজ্মের মাধ্যমে ঘটে এবং মুখ্যত অ্যালকিন উৎপন্ন হয়।

উদাহরণ

$${
m CH_3CH}\!=\!\!{
m CH_2}\!+\!{
m (CH_3)}_2{
m CH}\!-\!{
m O}\!-\!{
m CH}{
m (CH_3)}_2$$
 প্রোপিন (মুখ্য) ভাইআইন্সোপ্রোপাইল ইথার (গৌণ)

্রাা টারসিয়ারি অ্যালকোহলের ক্ষেত্রেও বিক্রিয়াটি E1 মেকানিজ্মে ঘটে এবং অ্যালকোহল প্রায় সম্পূর্ণরূপে অ্যালকিনে পরিণত হয়।

$$(CH_3)_3C-OH \xrightarrow{\text{গাঢ় H_2SO}_4} CH_3-C=CH_2+ H_2O$$
 টার্ট-বিউটাইল অ্যালকোহল 2 -মিথাইলপ্রোপিন

সুতরাং, বিভিন্ন শ্রেণির অ্যালকোহলের নিরুদিত হয়ে ইথার গঠনের প্রবণতার ক্রম:প্রাইমারি (1°) > সেকেন্ডারি (2°) > টারসিয়ারি (3°)।

>> সীমাবন্ধতা: এই পন্ধতিতে সাধারণত সরল বা প্রতিসম (symmetrical) ইথার প্রস্তুত করা হয়। মিশ্র ইথার প্রস্তুতির জন্য দুটি ভিন্ন অ্যালকোহল ব্যবহার করতে হয় বলে তিনটি বিভিন্ন ইথারের মিশ্রণ উৎপন্ন হয়। ফলে কাঙ্ক্ষিত মিশ্র ইথার (ROR')-এর উৎপাদন কম হয় এবং মিশ্রণের ইথারগুলির স্ফুটনাঙ্ক খুব কাছাকাছি হওয়ায় মিশ্রণ থেকে এদের পৃথক করাও কন্তুসাধ্য হয়। তাই এই পদ্ধতিতে মিশ্র বা অপ্রতিসম ইথার প্রস্তুত করা হয় না।

তিনটি ভিন্ন ইথারের মিশ্রণ

অ্যালকোহলের অ্যাসিড অনুঘটকীয় নিরুদন পন্ধতি অপ্রতিসম ইথার প্রস্তুতির জন্য অনুপযোগী হলেও টার্ট-বিউটাইল অ্যালকোহল ও ইথাইল অ্যালকোহল থেকে এই পষ্ধতিতে *টার্ট-*বিউটাইল ইথাইল ইথার সহজে এবং অধিক পরিমাণে প্রস্তুত করা যায়। কারণ 3° কার্বোক্যাটায়ন 1° কার্বোক্যাটায়ন অপেক্ষা অধিক স্থিতিশীল হওয়ায় *টার্ট*-বিউটাইল অ্যালকোহল, ইথাইল অ্যালকোহল অপেক্ষা অতি দ্রুত সংশ্লিষ্ট কার্বোক্যাটায়ন গঠন করে। উৎপন্ন *টার্ট-*বিউটাইল ক্যাটায়ন (3°) ইথানলের সঙ্গে বিক্রিয়ায় টার্ট-বিউটাইল ইথাইল ইথার গঠন করে।

অনুঘটকীয় নিরুদন (ইথারের শিল্পোৎপাদন): 250°C ১৯৫১ (Al_O2) বা থোরিয়া (ThO2) অনুঘটক অনুষ্টকীয় নিরুপণ (২০০০) উত্তপ্ত অ্যালুমিনা (Al₂O₃) বা থোরিয়া (ThO₂) অনুষ্টকের জ্ব কাষ্প চালনা করলে অ্যালকোহল নির্ভ্ উত্তপ্ত অ্যালুমিনা (A1203)
দিয়ে অ্যালকোহল বাষ্প চালনা করলে অ্যালকোহল নির্দিত দ্বী
ক্ষি দিয়ে অ্যালকোহণ সাত্র করে। এই পর্ম্বতিতে ইথারের শিক্ষোৎপাদন করি হি

$$RO H + HO R \xrightarrow{Al_2O_3 \neq 1 \text{ ThO}_2} R - O - R + H_2O$$

দাহরণ
$$C_2H_5O$$
 C_2H_5O C_2H_5O C_2H_5O C_2H_5O তাইইথাইল ইথার

💨 2. অ্যালকোহলের সঞ্চো ডায়াজোমিথেনের বিক্রিয়া দ্বারা

টেট্রাফ্লুরোবোরিক অ্যাসিড (HBF₄)বা অ্যালুমিনিয়াম আলক্ষাই [Al(OR)₃]-এর মতো অনুঘটকের উপস্থিতিতে অ্যালকোহনের মূছে ডায়াজোমিথেনের বিক্রিয়ায় মিথাইল ইথার উৎপন্ন হয়।

উদাহরণ
$${
m CH_3CH_2OH+CH_2N_2} \xrightarrow{{
m HBF_4}} {
m CH_3CH_2OCH_3+N_2}$$
 ইথানল ডায়াজোমিথেন ইথাইল মিথাইল ইথার বা মিথঞ্জিইথেন

ফেনলের (C₆H₅OH) সঙ্গে ডায়াজোমিথেনের বিক্রিয়া 🚜 মিথাইল ফিনাইল ইথার বা অ্যানিসোল $(C_6H_5OCH_3)$ প্রস্তুত করা $\overline{\eta_8}$ তবে এক্ষেত্রে কোনো অনুঘটকের প্রয়োজন হয় না, কারণ ফেন অ্যালকোহল অপেক্ষা অধিক আশ্লিক। মনে রাখতে হবে ডায়াজোফিজ দ্বারা মিথিলেশনের জন্য সাবস্ট্রেটে আল্লিক হাইড্রোজেনের উপস্থিটি আবশ্যক। Al(OR)₃ বা HBF₄-এর উপস্থিতিতে আ<mark>লকোংল</mark>ে আল্লিকতা যথেষ্ট বৃদ্ধি পায়।

🦚 3. অ্যালকিনের সঙ্গে অ্যালকোহলের বিক্রিয়া দ্বারা

অ্যাসিড (অনুঘটক)-এর উপস্থিতিতে সক্রিয় অ্যালকিনের (ক্ক্রে অ্যালকিল-প্রতিস্থাপিত অ্যালকিন) সঙ্গে অ্যালকোহলের সংযুক্তির ফ্র ইথার উৎপন্ন হয়।

উদাহরণ

$$(CH_3)_2$$
C = $CH_2 + HOCH_3$ গাঁঢ় H_2SO_4 $(CH_3)_3$ C - 0 - CH_3 $(2$ -মিথাইলগ্রোপিন) (মিথানল) $(2$ -মিথার্ক্ট-2-মিথাইলগ্রোপেন)

এই পন্ধতির একটি অসুবিধা এই যে অনেক সময় উৎপন্ন অন্তর্কী কার্বোক্যাটায়ন পুনর্বিন্যস্ত হয়ে অধিক স্থিতিশীল কার্বোক্যাটায়নে ^{পরিণ} হয় বলে কাঙ্ক্ষিত ইথারের পরিবর্তে পুনর্বিন্যস্ত ইথার পাওয়া যায়।

উদাহরণ

$$\begin{array}{c} (\mathrm{CH_3})_2\mathrm{C} - \mathrm{CH}(\mathrm{CH_3})_2^{\mathrm{H_2SO_4}} (\mathrm{CH_3})_3\mathrm{C} - \mathrm{CH} = \mathrm{CH_2} + \mathrm{C_2H_5OH} \\ \mathrm{OC_2H_5} & 3,3 - \mathrm{william} - 1 - \mathrm{dwilliam} \\ \mathrm{2}\text{-}\mathrm{\overline{2}}\mathrm{viss} - 2,3 - \mathrm{william} \mathrm{\overline{2}}\mathrm{viss} \mathrm{ord} \\ \mathrm{(Q_{H}}\mathrm{\overline{G}}\mathrm{rigw} \, \mathrm{\overline{2}}\mathrm{viss}) & \mathrm{CH_3} \\ \mathrm{(Q_{H}}\mathrm{\overline{G}}\mathrm{rigw} \, \mathrm{\overline{2}}\mathrm{viss}) & (\mathrm{CH_3})_3\mathrm{C} - \mathrm{CH} - \mathrm{OC_2H_5} \\ \mathrm{3}\text{-}\mathrm{\overline{2}}\mathrm{viss} - 2,2 - \mathrm{william} \mathrm{\overline{2}}\mathrm{viss} \mathrm{\overline{2}}\mathrm{viss}) \\ \mathrm{(Amissing of Swiss)} & \mathrm{(CH_3)_3C} - \mathrm{CH} - \mathrm{OC_2H_5} \\ \mathrm{Chisper of Swiss} \mathrm{\overline{2}}\mathrm{viss} \mathrm{\overline{2}}\mathrm{\overline{2}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2}}\mathrm{\overline{2$$

আটি খালকিল হাালাইড থেকে (From alkyl halides)

া উইনিয়ামসন সংশ্লেষণ (Williamson synthesis) দারা

ির্মাম বা পটাশিয়াম আালকক্সাইড (RÖNa বা RÖK) ও গ্রেডিয়াম বা পটাশিয়াম আালকক্সাইড (RÖNa বা RÖK) ও গ্রেডিয়াম বা পটাশিয়াম আালকক্সাইড (RÖNa বা RÖK) ও গ্রেডিয়াম বা RÖK) ও করলে ইথার উৎপন্ন হয়। করিব নামানুসারে ইথার প্রস্তুতির এই পম্বতি ছারা সরল বা মিশ্র উভয় প্রকার ইথারই প্রস্তুত কর্মান (যেহতু এই পম্বতিতে একাধিক ইথারের মিশ্রণ উৎপন্ন হয় না, ক্রি ইথার প্রস্তুতির এটি একটি উত্তম পম্বতি। বিক্রিয়াটি S_N2

(simple) বা প্রতিসম (symmetrical) ইথার প্রস্তৃতি: $R = 0 \text{ Na} + R \stackrel{\frown}{=} X \xrightarrow{\Delta} R = 0 - R + \text{Na}X$

সেরির সোডিয়াম ইথক্সাইড ও ইথাইল আয়োডাইডের অ্যালকোহলীয় ত্রব্যকে উত্তপ্ত করলে ডাইইথাইল ইথার (সরল বা প্রতিসম) উৎপন্ন হয় এবং সোডিয়াম আয়োডাইড পৃথক হয়।

$$C_2H_5$$
 – ONa + CH_3 CH_2 $\stackrel{\Delta}{=}$ I $\stackrel{\Delta}{=}$ $C_2H_5OC_2H_5$ + I মেরা স্থাইল উথাইল ইথার ব্যায়াডাইড

🙆 মিশ্র (mixed) বা অপ্রতিসম (unsymmetrical) ইথার প্রস্তৃতি:

$$R' - ONa + R \stackrel{\Delta}{=} X \xrightarrow{\Delta} R' - O - R + NaX$$

সোহর। সোডিয়াম ইথক্সাইড ও মিথাইল আয়োডাইডের অ্যালকোহলীয় ব্লাকে উত্তপ্ত করলে ইথাইল মিথাইল ইথার উৎপন্ন হয় এবং সোডিয়াম আয়োডাইড পৃথক হয়।

$$C_2H_5$$
— ONa + CH_3 - C^*I $\xrightarrow{\Delta}$ C_2H_5 — O — CH_3 + NaI
সোভিয়াম মিথাইল ইথাইল মিথাইল ইথার
ইথক্সাইভ আয়োডাইড

আলকোহলের সঙ্গে Na, K বা NaH-এর বিক্রিয়া ঘটিয়ে আলকস্কাইডগুলি প্রস্তুত করা হয়।

 আলকিল অ্যারাইল ইথার (ফেনলিক ইথার) প্রস্তৃতি: সোডিয়াম ফেনপ্লাইডের সঙ্গে অ্যালকিল হ্যালাইডের বিক্রিয়া ঘটিয়ে অ্যালকিল আরাইল ইথার (ফেনলিক ইথার) প্রস্তৃত করা যায়।

তি
$$\mathbb{N}$$
a \rightarrow CH_3 \rightarrow

>> সীমাবদ্ধতা: উইলিয়ামসন সংশ্লেষণ পশ্বতিটি ইথার প্রস্তুতির জন্য
অত্যন্ত কার্যকরী হলেও অপ্রতিসম ইথার প্রস্তুতির জন্য বিক্রিয়ক
দটিকে সঠিকভাবে নির্বাচন করা প্রয়োজন। ① যেহেতু উইলিয়ামসন
সংশ্লেষণে সংঘটিত বিক্রিয়াটি অকটি S_N2 বিক্রিয়া, তাই এই

CamScanner

পশ্বতিতে ইথার প্রস্তুতির জন্য অ্যালকিল হ্যালাইডেটি প্রাইমারি (বা মিথাইল) হালাইডের ক্ষেত্রে স্টেরিক হিনড্রেন্স সবচেয়ে কম বলে এরা সর্বাধিক সক্রিয়। প্র সেকেন্ডারি আালকিল হ্যালাইডের ক্ষেত্রে স্টেরিক হিনড্রেন্সের জন্য S_N2 বিক্রিয়া ব্যাহত হয় বলে E2 বিক্রিয়ার মাধ্যমে মুখ্যত আ্যালকিন উৎপন্ন হয় এবং টারসিয়ারি অ্যালকিল হ্যালাইডের ক্ষেত্রে তীব্র স্টেরিক হিনড্রেন্সের জন্য S_N2 বিক্রিয়ার মাধ্যমে মুখ্যত আ্যালকিন উৎপন্ন হয় এবং টারসিয়ারি অ্যালকিল হ্যালাইডের ক্ষেত্রে তীব্র স্টেরিক হিনড্রেন্সের জন্য S_N2 বিক্রিয়া সম্পূর্ণরূপে ব্যাহত হয় বলে E2 বিক্রিয়ার মাধ্যমে সম্পূর্ণরূপে অ্যালকিন উৎপন্ন হয়। ব্যালকক্সাইড যৌগটি প্রাইমারি, সেকেন্ডারি বা টারসিয়ারি অ্যালকক্সাইড যৌগটি প্রাইমারি, সেকেন্ডারি বা টারসিয়ারি আ্যালকোহলজাত অ্যালকক্সাইড হতে পারে। অ্যালিকল হ্যালাইড হিসেবে ব্রোমাইড বা আয়োডাইড ব্যবহার করা অধিক কার্যকরী কারণ বি ও Br ভালো লিভিং গ্রুপ। সূত্রাং, আইসোপ্রোপাইল বা টার্ট-বিউটাইল গ্রুপবিশিষ্ট ইথারের প্রস্তুতির জন্য গ্রুপ দুটিকে অ্যালকক্সাইড যৌগে উপস্থিত থাকতে হবে, অ্যালকিল হ্যালাইডে নয়।

উদাহরণ টার্ট-বিউটাইল ইথাইল ইথার প্রস্তুতির জন্য সোডিয়াম টার্ট-বিউটক্সাইডের সঙ্গো ইথাইল ব্রোমাইডের বিক্রিয়া ঘটাতে হবে, সোডিয়াম ইথক্সাইডের সঙ্গো টার্ট-বিউটাইল ব্রোমাইডের নয়, কারণ সেক্ষেত্রে শুধুমাত্র 2-মিথাইলপ্রোপিন উৎপন্ন হবে।

ি
$$(CH_3)_3$$
C $-ONa+CH_3$ $-CH_2$ $-Br$ $-\Delta (S_N^2)$ সোডিয়াম ইথাইল ব্রোমাইড $(CH_3)_3$ C $-O-CH_2$ C H_3+NaBr টার্ট-বিউটাইল ইথার

উদাহরণ
$$C_2H_5O\overset{\oplus}{Na}+\overset{\oplus}{\longrightarrow}-Br\overset{S_N^2}{\longrightarrow}-OC_2H_5$$
 ইথাইল ফিনাইল ইথার
$$\overset{\oplus}{\longrightarrow}-Br\overset{S_N^2}{\longrightarrow}-O-\overset{\oplus}{\longrightarrow}-Dr$$

🦚 2. অ্যালকিল হ্যালাইড ও শুষ্ক সিলভার অক্সাইডের বিক্রিয়া দ্বারা

শুষ্ক সিলভার অক্সাইড $(\mathrm{Ag}_2\mathrm{O})$ ও অ্যালকিল হ্যালাইডের মিশ্রণকে উত্তপ্ত করলে ইথার উৎপন্ন হয়।