Name of the Teacher-Sutapa Chakrabarty Subject: Chemistry Class: Semester-2 Paper: DSC1BT: Organic Chemistry Topic: Aromatic Hydrocarbons PART 2

Comments: Go through the marked portions carefully and complete the given assignment.

Reference: Chhaya Rasayan,Ekadash b**y** Maiti,Tewari,Roy টি^{ডেল-বু}সাঁফ্টস বিক্রিয়া: যে বিক্রিয়ায় অনুষ্টকের উপস্থিতিতে বেঞ্জিন ন্দ্ররে H-পরমাণু অ্যালকিল (R-) বা অ্যাসাইল (RCO-) ধ্বপ _{ধারা} প্রতিম্থাপিত হয়, তাকে ফ্রিডেল-ক্র্যাফ্টস বিক্রিয়া বন্দেu

আ^{যু ট্র}র্কা: ফ্রিডেল-ক্র্যাফ্টস বিক্রিয়ার প্রেষ্ঠ অনুমটক অনা**র্দ্র অ্যাল্**মিনিয়ান ক্রোরাইড (AICI₃)। এছাড়াও বোরন ট্রাইফ্রুরাইড (BF₃), অনার্দ্র কেরিক ক্লোরাইড (FeCl₃), অনার্দ্র জিংক ক্লোরাইড (ZnCl₃) প্রভৃতি লুইস অ্যাসিড এবং HF, H2SO4, H3PO4 প্রভৃতি প্রেটিন অ্যাসিডও অনুষটকরুপে ব্যবহৃত হয়।

- দ্রাবক: Δ ই বিক্রিয়ার উপযুক্ত দ্রাবক নাইট্রোবেঞ্চিন $(C_8H_5NO_2)$ । নাইট্রোবেঞ্জিন নিজে ফ্রিডেল-ক্র্যাফ্টস বিক্রিয়ায় অংশগ্রহণ করে না, কিন্তু এটি ধুবীয় হওয়ায় এর মধ্যে অনার্দ্র AICl, দ্রবীভূত হয়। বেঞ্জিন ও অ্যালকাইলেটিং বা অ্যাসাইলেটিং বিকারকও নাইট্রোবেঞ্জিনে দ্রবীভূত হয়। সব বিক্রিয়ক পদার্থগুলি একই তরল মাধ্যমে দ্রবীভূত ধাকে, তাই বিক্রিয়াটি ভালোভাবে সম্পন্ন হয়। এছাড়া নাইট্রোবেঞ্জিনের স্ফুটনাঞ্চ্ব উচ্চ (211°C) হওয়ায় প্রয়োজনে বিক্রিয়াটি বেশি উন্নতায় ঘটানো যায়। অনেক ক্ষেত্রে CS₂ দ্রাবক হিসেবে ব্যবহৃত হয়।
- , ক্লিডেন্স-ক্র্যাফ্টস অ্যান্সকাইলেশন: অনার্দ্র AICI₃ -এর উপস্থিতিতে বেঞ্চিন ও অ্যালকিল হ্যালাইডের (RX) বিক্রিয়ায় বেঞ্চিন বলয়ের H-পরমাণু অ্যালকিল গ্রুপ দ্বারা প্রতিস্থাপিত হয়ে অ্যালকিলবেঞ্জিন উৎপন্ন করে। এই বিক্রিয়াকে ফ্রিডেল-ক্র্যাফ্টস অ্যালকাইলেশন বলে।

 $C_6H_6 + RX \xrightarrow{\text{Garlf AlCl}_3} C_6H_5R + HX [X = Cl, Br, I]$ आनंकिन ग्रानारेড Δ आनंकिनादश्चिन

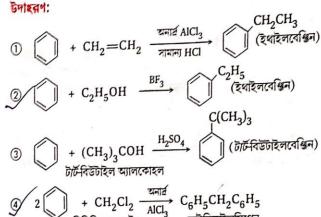
বিক্রিয়ার ক্রিয়াকৌশল: এই বিক্রিয়ায় কার্যকারী ইলেকট্রোফাইল R⁺। 2° বা 3° অ্যালকিল হ্যালাইডের সঙ্গে AICl₃-এর বিক্রিয়ায় কার্বোক্যাটায়ন গঠিত হলেও 1° বা মিথাইল হ্যালাইডের সংশ্যে AICl₃-এর বিক্রিয়ায় R⁺ গঠিত হয় না। কারণ 1° কার্বোক্যাটায়ন ও CH₃ -এর স্থিতিশীলতা থুবই কম। সেক্ষেত্র RX ও AICl₃ -এর বিক্রিয়ায় গঠিত প্রাথমিক কমপ্লেক্সটি ইলেকট্রোফাইলরূপে কাজ করে।

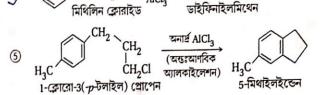
ইলেকট্রোফাইল গঠন:

$$\mathbf{R} - \overset{\bullet}{\mathbf{Cl}} \overset{\bullet}{\mathbf{I}} \overset$$

প্রতিস্থাপন: ⁰AlCl₃

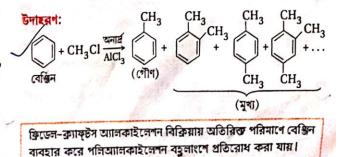
0


(1


 $\frac{1}{2} \stackrel{\Theta}{\text{AlCl}_3} \stackrel{\text{fast}}{\longrightarrow} \stackrel{\Theta}{\longrightarrow} + \text{HCl} + \text{AlCl}_3$

ত কমপ্লের

उभारतनः


এই বিক্রিয়ায় অ্যালকিল হ্যালাইড ছাড়াও অ্যালকাইলেটিং বিকারক হিসেবে অ্যালিফ্যাটিক অ্যালকোহল, অ্যালকিন ব্যবহার করা যায়। এক্ষেত্রে অনুষটকর্পে AlCl $_3$ ছাড়াও $\mathrm{BF}_3,\mathrm{HF}$ বা গাঢ় $\mathrm{H_2SO}_4$ ব্যবহার করা হয়।

ফ্রিডেল-ক্র্যাফ্টস অ্যালকাইলেশন বিক্রিয়ার সীমাবন্ধতা:

🖌 মনোঅ্যালকিলবেঞ্জিন প্রস্তুতিতে ফ্রিডেল-ক্র্যাফ্টস অ্যালকাইলেশন বিক্রিয়া উপযোগী নয়। কারণ এ**কটি অ্যালকিল গ্রুপ বেঞ্চিন বলয়ে** প্রবেশ করলে, অ্যালকিল গ্রুপটির ইলেকট্রন-বিকর্ষী ধর্মের জন্য বলয়ের ইলেকট্রন-ঘনত্ব বৃধ্বি পায় এবং বলয়টি ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ার জন্য অধিকতর সক্রিয় হয়ে ওঠে। ফলে বলয়ে একাধিক অ্যালকিল গ্রুণ প্রবেশ করে বা প**লিঅ্যালকাইলেশন** ঘটে।

2

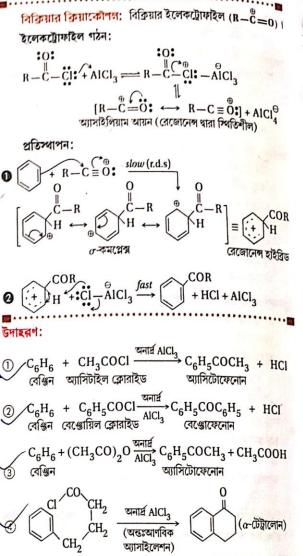
III) ਇੰਦਾਇਕ-दुर्गारुऎम आगलकाই(लगरान राजरुएठ आगलकिल राग्नाई/७४७ और
या ठाउ दिनि मध्याक कार्यन भाषाभाषा था था।
आगलिकन राग्नाई/७ राज
आगलिकन राग्नाई/७ राज
या)
वा ठाउ दिनि मध्याक कार्यन भाषाभा था।
भाषाभाषा था।
भाषाभाषा था।
भाषाकिक राग्नाई हुएगा है।
प्राग्नाकिक सुभाग राज
प्राग्नाकिक सुभाग राज
प्रात्तिक सुभाग राज
प्राग्नाकिक सुभाग राज
प्राग
प्राग्नाकिक सुभाग राज
प्राग
प्राग्नाकिक सुभाग राज
प्राप्राप्राजि
प्राप्राप्राप्राप्राप्राजि
प्राप्राप्राप्राप्राप्राप्राप्राप्राप्राप्राप्राप्राप्राप्राप्राप्रप्रप्राप्राप्रप्रप्रप्रप्राप्रप्रप्रप्रप्रप्राप्रप्रप्रप्रप्रप्राप्रप्रप्रप्रप्राप्रप्रप्र</t

অনার্চ AICL

 + (CH₃)₂CHCH₂CI

 আইসোরিউটাইল ক্লোরাইড

 আইসোরিউটাইল ক্লোরাইড


 বিক্রিয়ার ক্রিয়াকৌশল: 3টি বা তার বেশি C -পরমাণ্যুক্ত প্রাইমারি আলকিল ক্লোরাইডগুলির সঙ্গে AICI₃-এর বিক্রিয়ায় উৎপন্ন লুইস আরিড-লুইস জারক কমপ্লেশ্বগুলি একইসঙ্গে বিভাজিত ও পুনর্বিন্যন্ত য্যাসিড-লুইস জারক কমপ্লেশ্বগুলি একইসঙ্গে বিভাজিত ও পুনর্বিন্যন্ত হয়ে স্থিতিশীল 2° বা 3° কার্বোক্যাটায়নে পরিণত হয়। এই কার্বোক্যাটায়নগুলি প্রতিস্থাপন বিক্রিয়ায় অংশগ্রহণ করে, ফলে যে অ্যালকিলবেঞ্জিন উৎপন্ন হওয়ার কথা তার সমাবয়বী একটি অ্যালকিলবেঞ্জিন মুখ্য বিক্রিয়াজাত হিসেবে উৎপন্ন হয়।

 III] -NO₂, -COOH, -COR ও -^MMe₃ প্রভৃতি ইলেকট্রন-আকর্ষা গ্রুপগুলি বলয় থেকে ইলেকট্রন অপসারণ করায় ওই ইলেকট্রন ঘাটতি-যুক্ত বলয়গুলির অপেক্ষাকৃত দুর্বল ইলেকট্রোফাইল (R⁺)-এর প্রতি কোনো আসন্তি থাকে না। তাই প্রতিস্থাপন বিক্রিয়া ঘটে না। তাই C₆H₅NO₂, C₆H₅COOH, C₆H₅COR, C₆H₅N(CH₃)₃, C₆H₅NH₂ যৌগগুলি এই বিক্রিয়ায় অংশ নেয় না।
 IV] কোনো ভিনাইল হ্যালাইড বা হ্যালোবেঞ্জিন [যেমন-ভিনাইল ক্রোরাইড (CH₂=CH-Cl) বা ক্লোরোবেঞ্জিন (C₆H₅Cl)]-কে আলকাইলোটিং বিকারক হিসেবে ব্যবহার করা যায় না।

ফ্রিডেন্স-ক্র্যাফ্টস অ্যাসাইলেশন: অনুষটক হিসেবে অনার্দ্র AlCl₃-এর উপস্থিতিতে বেঞ্ছিনের সঙ্গে অ্যাসাইল ক্লোরাইড (RCOCI)-এর বিক্রিয়ায় বেঞ্চিন বলয়ের H-পরমাণু অ্যাসাইল (RCO—) গ্রুপ দ্বারা প্রতিস্থাপিত হয়, ফলে অ্যাসাইলবেঞ্চিন (অ্যারোমেটিক কিটোন) উৎপন্ন হয়। এই বিক্রিয়াকে ফ্রিডেল-ক্র্যাফ্টস অ্যাসাইলেশন ব্র্নের্ম

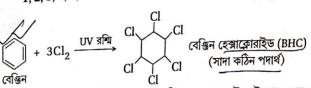
$$C_6H_6$$
 + RCOCI $\xrightarrow{\text{unif AlCl}_3}$ C_6H_5COR + HCl
(지ෂਿন আসাইল কোরাইড আসাইলবেঞ্জিন

স্র্যাসাইল ক্লোরাইড ছাড়া অ্যাসাইলোটিং বিকারক (acylating agent) হিসেবে অ্যাসিড অ্যানহাইদ্রাইড-ও ব্যবহৃত হয়।

আ্যসাইলেশন বিক্রিয়ার দুর্টি বিশেষ সাংশ্লেষিক সুবিধা:) বেঞ্জিনের পলিঅ্যালকাইলেশন ঘটলেও পলিঅ্যাসাইলেশন ঘটে না। অ্যাসাইল গ্রুপের ইলেকট্রন-আকর্ষী প্রভাবে বলয়ের ইলেকট্রন-খনত্ব হাস পায়। ফলে বিক্রিয়া-মাধ্যমে অতিরিক্ত RCOCI থাকলেও দ্বিতীয় প্রতিস্থাপন ঘটে না এবং বিশুদ্ধ অ্যারোমেটিক কিটোন প্রস্তুত করা যায়।) অ্যাসাইলেশন বিক্রিয়ায় অ্যাসাইল হ্যালাইডের কার্বন শৃঙ্খলের কোনো-রকম পুনর্বিন্যাস ঘটে না, তাই এক্ষেত্রে কাব্দিক আ্যারোমেটিক কিটোনের সমাবয়বী কোনো কিটোন উৎপন্ন হয় না। যেমন-প্রোপানোয়িল ক্লোরাইড দ্বারা বেঞ্জিনের অ্যাসাইলেশনে প্রাপ্ত কিটোনের বিজারণে প্রোপাইলেবেঞ্জিনই একমাত্র বিক্রিয়াজাতর্পে পাওয়া যায়।

বেঞ্জিন

3

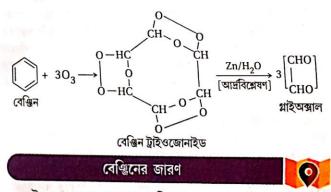

 $C(CH_3)_3$

4

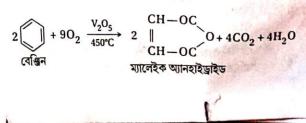
বেঞ্জিনের চেয়ে কম স্থিতিশীল, অর্থাৎ অধিক সক্রিয় বলে আরও সহজে এবং দুত বিজারিত হয়ে যায়।

II] বার্চ বিজারণ: মিথানল বা ইথানলের উপস্থিতিতে Na, K বা Li ও তরল NH₃ দ্বারা বেঞ্জিনের বিজারণে 1, 4 সাইক্রোহেক্সাডাইইন উৎপন্ন হয়। একে বার্চ বিজারণ (Birch reduction) বলে।

হ্যালোজেন সংখ্রক্তি: ফুটন্ড বেঞ্জিনে ক্লোরিন গ্যাস চালনা করলে অথবা অতিবেগুনি রশ্মির উপস্থিতিতে বেঞ্জিনে ক্লোরিন গ্যাস চালনা করলে বেঞ্জিন 3 অণু ক্লোরিনের সঙ্গে যুক্ত হয়ে বেঞ্জিন হেক্সাক্লোরাইড বা 1, 2, 3, 4, 5, 6 -হেক্সাক্লোরোসাইক্লোহেক্সেন উৎপন্ন করে।



ব্রোমিন-ও সমভাবে বিক্রিয়া করে **বেঞ্ছিন হেক্সাব্রোমাইড** উৎপন্ন করে।


 $C_6H_6 + 3Br_2 \xrightarrow{UV রশ্ম} C_6H_6Br_6$ বেঞ্জিন বেঞ্জিন বেঞ্জিন হেস্পারোমাইড

আয়োডিনের সঙ্গে বেঞ্জিনের এমন যুত বিক্রিয়া হয় না।

ওজোন সংযুক্তি: সাধারণ উন্নতায় বেঞ্জিনের মধ্যে দিয়ে ওজোনিত অক্সিজেন গ্যাস চালনা করলে বেঞ্জিন 3 অণু ওজোনের সঙ্গে যুক্ত হয়ে দুঃস্থিত যুত যৌগ বেঞ্জিন ট্রাইওজোনাইড উৎপন্ন করে। জিংকের উপস্থিতিতে বেঞ্জিন ট্রাইওজোনাইডকে আর্দ্রবিশ্লেষিত করলে 3 অণু গ্লাইঅক্সাল ও H₂O₂ উৎপন্ন হয়। উৎপন্ন H₂O₂ জিংক দ্বারা বিজারিত হয়ে জলে পরিণত হয়।

উচ্চ তাপমাত্রায় (450°C) বেঞ্জিন বাষ্পও বায়ুর মিশ্রণ ভ্যানাডিয়াম পেন্টক্সাইড (V₂O₅) অনুঘটকের ওপর দিয়ে চালনা করলে বেঞ্জিন জারিত হয়ে ম্যালেইক অ্যানহাইড্রাইড-এ পরিণত হয়।

 (i) KMnO₄, OH⁻, তাপ
 (i) KMnO₄, OH⁻, তাপ
 (ii) KMnO₄, OH⁻, তাপ
 (ii) H₃O⁺
 (ii) H₃O⁺

 $C_6H_5C(CH_3)_3 \xrightarrow{AlCl_3/HCl} C_6H_6+ (CH_3)_2C = CH_2$

ক্লারোমিথিলেশন: অনার্দ্র জিংক ক্লোরাইড অনুষ্টকের উপস্থিতিতে বেঞ্জিনের সঙ্গে ফর্মালডিহাইড ও হাইড্রোক্লোরিক অ্যাসিডের বিক্রিয়ায় বেঞ্জিনের একটি H-পরমাণু ক্লোরোমিথাইল (–CH₂Cl) গ্রুপ দ্বারা প্রতিস্থাপিত হয়ে বেঞ্জাইল ক্লোরাইড উৎপন্ন হয়।

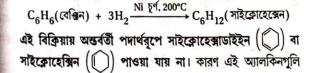
$$C_6H_6$$
+ HCHO + HCl $\xrightarrow{\text{Qentric ZnCl}_2} C_6H_5CH_2Cl+H_2O$
(तश्वादेव द्वावादेख

বেঞ্জিন বলয় থেকে অ্যালকিল গ্রুপ (—R) অপসারণের অনুরূপ পর্ম্বতিতেই —CH₂Cl গ্রুপ অপসারিত করা যায়।

গ্যাটারম্যান-কচ অ্যালডিহাইড সংশ্লেষণ: অনার্দ্র AICl₃ এবং সামান্য Cu₂Cl₂ অনুষ্টকের উপস্থিতিতে ইথার বা নাইটোবেঞ্জিনে দ্রবীভৃত বেঞ্জিনের মধ্যে দিয়ে কার্বন মনোক্সাইড ও হাইড্রোজেন ক্লোরাইডের মিশ্রণ চালনা করলে বেঞ্চালডিহাইড উৎপন্ন হয়।

$$C_6H_6 + CO + HCI \xrightarrow{\alpha = \text{IIII} \text{AlCl}_3 / Cu_2Cl_2} C_6H_5CHO + HCI$$
 (वश्वाानिष्ठारेष

বেঞ্জিন বলয় থেকে অ্যাসাইল (RCO—) গ্রুপ অপসারণের অনুরুপ পম্বতিতেই —CHO গ্রুপ অপসারিত করা যায়।


গ্যাটারম্যান অ্যালডিহাইড সংশ্লেষণ: অনার্দ্র AICl₃ এর উপস্থিতিতে বেঞ্জিনের সঙ্গো HCN এবং HCI-এর বিক্রিয়ায় উৎপন্ন ইমিন যৌগকে আর্দ্রবিশ্লেষিত করলে বেঞ্জ্যালডিহাইড উৎপন্ন হয়।

$$C_6H_6 \xrightarrow{\text{HCN} + \text{HCI}(g)}{\text{Warlef AlCl}_3} C_6H_5CH = \text{NH}(\overline{2}) \xrightarrow{H_2O} C_6H_5CHO$$

 $(\mathbf{0})$

বেঞ্জিনের যুত বিক্রিয়াসমূহ

বিজারণ: হাইড্রোজেন্দ সংখ্রুক্তি (Reduction: Addition of H₂):) সাইক্লোহেক্সেনে বিজারণ: 200°C উন্নতায় উত্তপ্ত নিকেল চূর্ণ তর্দুঘটকের ওপর দিয়ে বেঞ্ছিন বাষ্প ও হাইড্রোজেনের মিশ্রণ চালনা করলে হেক্সাহাইড্রোবেঞ্ছিন বা সাইক্লোহেক্সেন উৎপন্ন হয়।

Appignment 7. ट्वाञ्चलिं ट्र्वाहितिमान किंग्रिम द्राट्य द्राय हिंदिन दु की बीरकाक ठमें कि दिक्ष - की की त्र का की का कि का कि का कि 2. Trease 15 colo states see the land 3. 138 CON - BUDDEN AJUNA BRANKA BINING attat aprinting (mara 352, forz oprantiment teraint arty operationary signer Cars 4. BHC 22 : aferte arte ser Si ; 5. Isong onfortythis and 3 mbasigges (A, B, c) ZMAT U AT + CH2=CH2 Hel (=) + H2504 (mp) 80°C B (Ü) CamScanner + (CH3CO)20 EDTATTA CamScanner CH3CO)20 EDTATTA CS