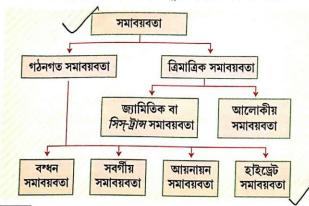
Name of the Teacher-Sutapa Chakrabarty

Subject: Chemistry Class: Semester-4

Paper: DSC-1DT (CC-4)

Topic: Coordination Chemistry


Part 2

Comments: Go through the marked and underlined portions carefully and complete the given assignment.

Reference: Chhaya Rasayan, Dadwasi by Maiti, Tewari,

Roy

গঠনের এই বৈশিষ্ট্যকে সমাবয়বতা বা আইসোমেরিজম বলে। কোঅর্ডিনেশন যৌগের সমাবয়বতাকে প্রধানত দুটি ভাগে ভাগ করা যায়—গঠনগত সমাবয়বতা ও ব্রিমাত্রিক সমাবয়বতা। এগুলি আবার ভিন্ন ভিন্ন ভাগে বিভক্ত।

9.8.1 কোঅর্ডিনেশন যৌগের গঠনগত সমাবয়বতা (Structural isomerism in coordination compounds)

💨 বৃপন সমাবয়বতা (Linkage isomerism)

জটিল যৌগের কোঅর্ডিনেশন স্তরে উপস্থিত একটি নির্দিষ্ট অ্যাম্বিডেন্ট লিগ্যান্ড ভিন্ন ভিন্ন দাতা পরমাণুর মাধ্যমে কেন্দ্রীয় ধাতব পরমাণুর সঞ্চো ভিন্ন ভিন্ন ভাবে সংযুক্ত হওয়ার ফলে যেসব যৌগের সৃষ্টি হয় সেগুলিকে পরস্পারের বন্ধন সমাবয়বী বলে এবং সমাবয়ব গঠনের এরূপ বৈশিষ্ট্যকে বন্ধন সমাবয়বতা বলে।

উদাহরণ 💋 নাইট্রাইট (NO₂) মূলকটি N-পরমাণু বা O-পরমাণুর মাধ্যমে কেন্দ্রীয় ধাতব পরমাণুর সঙ্গে যুক্ত হয়ে যথাক্রমে নাইট্রোমূলকঘটিত সবগীয় যৌগ বা নাইট্রাইটমূলকঘটিত সবগীয় যৌগ গঠন করে। যেমন—নিম্নে প্রদত্ত লাল বর্ণের যৌগটি অ্যাসিড দ্বারা বিয়োজিত হয়ে নাইট্রাস অ্যাসিড নির্গত করে, অর্থাৎ এটি নাইট্রাইট যৌগ। কিন্তু হলুদ বর্ণের অপর সমাবয়বী যৌগট্টি অ্যাসিড দ্বারা বিয়োজিত হয় না, অর্থাৎ এটি নাইট্রো যৌগ।

[Çe(NH3)5(ONO)]CI: পেন্টাজ্যামিননাইট্রিটোকোবাল্ট(III) ক্লোরাইড লাল বর্ণের যৌগ (O-পরমাণুর মাধ্যমে যুক্ত)

 $[{
m C9}({
m NH_3})_5{
m NO}_2]{
m C1}$: পেন্টাঅ্যামিননাইট্রোকোবাল্ট $({
m III})$ ক্লোরাইড হলুদ বর্ণের যৌগ (N-পরমাণুর মাধ্যমে যুক্ত)

② [Cr(H₂O)₅SCN]^{2+ G} [Cr(H₂O)₅NC_{5]2+} পরস্পরের বন্ধন সমাবয়বী।

বন্ধন সমাবয়ব গঠনে অংশগ্রহণ করে এর্প অপর কয়েক্টি শিক্তি হল: OCN-, S2O3-, CN- ইত্যাদি।

💨 স্বৰ্গীয় সমাবয়বতা (Coordination isomerism)

জটিল ক্যাটায়ন ও জটিল অ্যানায়ন সমন্বিত একটি
ক্রু সবর্গীয় স্তর থেকে অপর সবর্গীন জটিল ক্যাতামন -কোঅর্ডিনেশন যৌগের এক সবগীয় স্তর থেকে অপর সবগীয় স্থান কিমায়ের ফলে যেসব যৌগের ৯ কোঅডিনেশন বেচনের ত বা একাধিক লিগ্যান্ডের স্থান বিনিময়ের ফলে যেসব যৌগের ও অনুসীয় সমাবয়বী বঙ্গে এবং সমাবয়র গান বা একাধিক ।লণ্যাতের সেগুলিকে পরস্পারের সবর্গীয় সমাবয়বী বলে এবং সমাবয়ব গঠনের জ্ব

উদাহরণ

- 0 [Co(NH₃)₆][Cr(CN)₆] এবং [Cr(NH₃)₆][Co(CN]₆]
- \mathbf{Q} [Cu(NH₃)₄][PtCl₄] এবং [Pt(NH₃)₄][CuCl₄]
- $oldsymbol{3}$ $[\mathrm{PtCNH_3)_4}][\mathrm{PtCl_4}]$ এবং $[\mathrm{PtCl(NH_3)_3}][\mathrm{PtCl_3(N_{H_3)}}]$

💨 আয়ুন্ধয়ন সমাবয়বতা (Ionisation isomerism)

একই আণবিক সংকেতবিশিষ্ট জটিল যৌগ যারা দ্রবণে ভিন্ন ভিন্ন জ্বীন ও সরল আয়ন উৎপন্ন করে তাদের আয়নায়ন সমাব্যবী বলে। যে বিশিষ্ট্র ফলে এরূপ সমাবয়বতার সৃষ্টি হয় তাকে আয়নায়**ন** সমাবয়বতা বলে।

উদাহরণ $\mathbb{C}_{0}(\text{NH}_{3})_{5}\text{SO}_{4}]\text{Br} \Longrightarrow [\text{Co(NH}_{3})_{5}\text{SO}_{4}]^{+} + \text{Br}$ $(\text{Co(NH}_3)_5\text{Br}]\text{SO}_4 \Longrightarrow [\text{Co(NH}_3)_5\text{Br}]^{2+} + \text{SO}_4^{2-}$

 $(\operatorname{Co(NH_3)_4Cl_2]NO_2} \rightleftharpoons (\operatorname{Co(NH_3)_4Cl_2}]^+ + \operatorname{NO_2^-}$

 $[Co(NH_3)_4Cl(NO_2)]Cl \Longrightarrow$

 $[Co(NH_3)_4Cl(NO_2)]^++Cl^-$

💨 হহিড্টে সমাবয়বতা (Hydrate isomerism)

► M_2 O অণু সমন্বিত যেসব জটিল যৌগের আণবিক সংকেত এই কিন্তু সবর্গীয় স্তরে ভিন্ন সংখ্যক $m H_2O$ অণু উপস্থিত থাকে, সেইস যৌগকে পরস্পারের হাইড্রেট সমাবয়বী বলা হয় এবং এর্পু সমাবয়বগাণে হাইড্রেট সমাবয়বতা বলে। এই প্রকারের সমাবয়বতাকে সবগীয় সমাবয়বতা একটি বিশেষ রূপ হিসেবে গণ্য করা যেতে পারে।

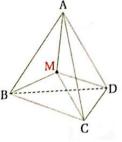
$\mathbf{CrCl_3 \cdot 6H_2O}$ সংকেতবিশিষ্ট 3 টি হাইড্রেট সমাবয়বীর সবর্গীয় স্তরের গঠন ও বিশিষ্ট ধর্মাবলি

NAME OF TAXABLE PARTY OF TAXABLE PARTY.			
গঠন-সংকেত ও বর্ণ	গাঢ় $ m H_2SO_4$ দ্বারা শোষিত $ m H_2O$ অণুর সংখ্যা	AgNO ₃ দ্রবণ দ্বারা অধঃক্ষিপ্ত CI ⁻ আয়নের সংখ্যা	জলীয় দ্রবণে উৎপন্ন আয়নসমূহ
$[\operatorname{Cr(H_2O)}_6]\operatorname{Cl}_3($ ্বেগুনি $)$	0	3	[Cr(H ₂ O) ₆] ³⁺ +3Cl ⁻
[Cr(H ₂ O) ₅ Cl]Cl ₂ ·H ₂ O (সবুজ)	1	2	[Cr(H ₂ O) ₅ Cl] ²⁺ + ^{2Cl⁻}
[Cr(H ₂ O) ₄ Cl ₂]Cl·2H ₂ O (সবুজ)	2	1	[Cr(H ₂ O) ₄ Cl ₂]++Cl ⁺
CS Scanned with CamScanner			

্ৰাষ্ট্ৰনেশন শৈণের তিমাত্রিক সমাব্য়বতা (Stereolsomerism in coordination compounds)

জ্ঞাণিক সংকেত ও একই গঠন-সংকেতবিশিষ্ট জটিল যৌগ কুই আণুবিক সংকেত ও একই গঠন-সংকেতবিশিষ্ট জটিল যৌগ কুই অণুবিক সংযুতি অভিন্ন হলেও কেন্দ্রীয় ধাতব আয়নের সংগ্রু কুই বিশ্বাভিস্কৃহির বিশ্বাভিস্কৃহির হয় তাকে জটিল যৌগের গ্রিমাত্রিক সমাবয়বতা বলে। কুই জুটির যৌগণুলিকে পরস্পরের গ্রিমাত্রিক সমাবয়ব বলে।

্রেজডিনেশন যৌগের জ্যামিতিক সমাব্যবতা _{(Geometrical} isomerism in coordination compounds)


ক্ষু আণবিক সংকেত ও একই গঠন-সংকেতবিশিষ্ট জটিল যৌগের ক্ষু ন্তরে সংযুতি অভিন্ন হলেও কেন্দ্রীয় ধাতব আয়নের সংগো যুক্ত ক্ষু ন্তরে আংশিক্ষক অবস্থানের ভিন্নতার জন্য যে সমাবয়বতার সৃষ্টি ক্রিক জ্যামিতিক সমাবয়বতা সুকলে। সংশ্লিষ্ট যৌগগুলিকে পরস্পরের ভাকে জ্যামিতিক সমাবয়বতা সুকলে। সংশ্লিষ্ট যৌগগুলিকে পরস্পরের

্_{কেন্দ্রীয় ধাতব আয়নের সবর্গাঙ্ক 2 বা 3 হলে জ্যামিতিক সমাবয়বতা জু হয় না। কিন্তু স্বর্গাঙ্কের মান 4 বা 6 হলে বিশেষ বিশেষ ক্ষেত্রে লু সমাবয়বতার সৃষ্টি হয়।}

্টিচুর্বর্ণীয় যৌগের জ্যামিতিক সমাবয়বতা (Geometrical isomerism of 4 coordinated compounds)

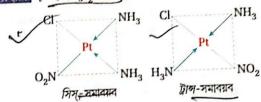
্ব স্বৰ্গাৰুকবিশিষ্ট যৌগের সংযুতি পাঁচ প্রকারের হতে পারে: MA_4 , A_1B_1 , MA_2B_2 , MA_2BC এবং MABCD (যেখানে M= কেন্দ্রীয় রু আয়ন, A,B,C,D= মনোডেন্টেট লিগ্যান্ড)। আবার এদের আকৃতি গুড়ারের হতে পারে: চতুস্তলকীয় (tetrahedral) ও সামতলিক বর্গাকার ্ব্যাব্যাব্যান্ত)।

চতুস্থলকীয় আকৃতির যৌগ:
চতুস্থলকীয় আকৃতির সবর্গীয় যৌগে
ধাতর আয়নটি চতুস্থলকের কেন্দ্রে এবং
লিগ্যান্ডের দাতা পরমাণুগুলি চতুস্থলকের
চারটি শীর্ষ বিন্দৃতে অবস্থান করে।
এক্ষেত্রে বন্ধন কোণের মান 109°28'
এবং প্রতিটি লিগ্যান্ড অপর লিগ্যান্ড
থেকে সমদূরত্বে অবস্থান করে।

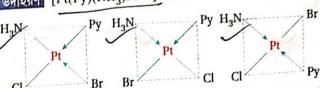
চতুত্তলকীয় গঠনাকৃতির জন্য MA_4 , MA_3B , MA_2B_2 , MA_2BC বা MABCD সংযুতিসম্পন্ন সবর্গীয় যৌগে জ্যামিতিক সমাবয়বতার সৃষ্টি হয় না (তবে MABCD সংযুতিসম্পন্ন সবর্গীয় যৌগগুলি আলোকীয় সমাবয়বতা প্রদর্শন করে)।

ম্মতলীয় বর্গাকৃতি মৌগ: স্মতলীয় বর্গাকৃতি জটিল যৌগে ধাতব আয়নটি থাকে কর্ণদ্বয়ের ছেদবিন্দৃতে এবং লিগ্যান্ডের দাতা পরমাণুগুলি থাকে চারটি শীর্য বিন্দৃতে। এই জাতীয় MA_4 বা MA_3B সংযুতির যৌগগুলি কোনোর্থ স্মাব্যবতা প্রদর্শন করে না, কিন্তু MA_2B_2 , MABCD প্রভৃতি সংযুতিবিশিষ্ট যৌগগুলি কোনের সমাব্যবতা প্রদর্শন করে না, কিন্তু MA_2B_2 ,

জ্যানিতিক সমাবয়বতা প্রদর্শন করে। এজড়া স্থিয়োজী লিগ্যান্ডবিশিষ্ট নৌণোর ক্ষেত্রেও এধরনের সমাবয়বতা লক্ষ করা যায়।

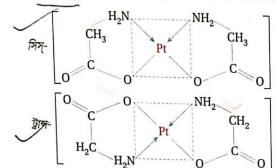

MA_B_ সংমৃতির নৌগ: দৃটি সম বা সদৃশ লিগ্যান্ত (মেমন, A ও মি অথবা B ও B)পাশাপাশি অবস্থান করলে সংগ্রিষ্ট মৌপটিকে সিস্-সমাবয়র (I), কিন্দু পরম্পরের বিপরীতে অর্থাৎ কোপাকৃপি (diagonally) অবস্থান করলে ট্রান্থ-সমাবয়র (II) বলে।

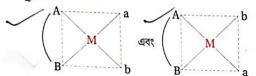
উদাহন্ত্রধ $\left[\operatorname{Pt}(\operatorname{NH}_3)_2\operatorname{Cl}_2
ight]$ জটিল যৌগটিকে সিস্- এবং ট্রান্থ-


MA2BC সংযুতির মৌগ: MA2BC সংযুতিসম্পায় য়ৌপপুলিও
সিস্- এবং ট্রাল- এই দুই প্রকার জ্যামিতিক সমাবয়বর্পে অবস্থান
করে। দুটি সমগ্রপ (A ও A)-এর আপেক্ষিক অবস্থান অনুযায়ী
সিস্- এবং ট্রাল- নামকরণ করা হয়।

উদাহরণ [Pt(NH3)2CINO2] যৌগটির 2টি সমাবয়ব বর্তমান।

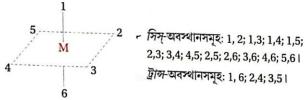
MABCD সংযুতির মৌগ: MABCD সংযুতির জটিল যৌগগুলিকে
তিনটি বিভিন্ন জ্যামিতিক সমাব্য়বরূপে পাওয়া যায়। (যে-কোনো একটি
লিখ্যান্ড ধরি, A-এর বিপরীত অবস্থানে অপর তিনটি লিখ্যান্ত B,
C ও D-কে পর্যায়ক্রমে বসালে এই সমাব্য়বগুলির উন্তব ঘটে)।


উদাহরণ [Pt(Py)(NH3)BrCl] যৌগটির 3টি সমাবয়ব বর্তমান।


 ${
m MA_2B_2}$, ${
m MA_2BC}$ এবং ${
m MABCD}$ সংযুতিবিশিষ্ট সমতলীয় বর্গাকৃতি যৌগগুলি আলোকীয় সমাবয়বতা প্রদর্শন করে না কারণ প্রতিটি যৌগের ক্ষেত্রেই প্রতিসাম্য তল বর্তমান।

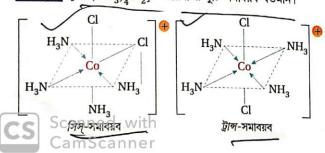
[M(AB)₂] সংযুতির <u>যৌগ</u>: কেন্দ্রীয় ধাতব আয়নের সঙ্গো অপ্রতিসম বাইডেন্টেট লিগ্যান্ড 'AB'-এর দুটি অণু সংযুক্ত করলে জ্যামিতিক সমাবয়বতার উদ্ভব ঘটে।

উদাহরণ [Pt(gly)2] যৌগটির 2টি জ্যামিতিক সমাবয়ব বর্তমান।

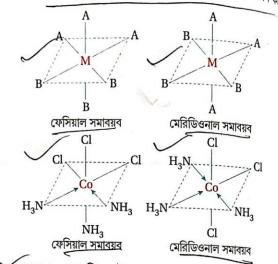


[M(AB)ab] সংযুতির যৌগ: 2টি জ্যামিতিক সমাবয়র বর্তমান।

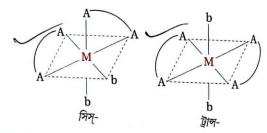
্ব্যুক্তি বড়বর্গীয় (6-coordinated) যৌগের জ্যামিতিক সমাবয়বতা

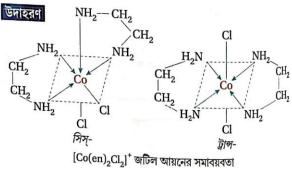

ষড়বগীয় জটিল যৌগগুলি অস্ততলকীয় হয়। অস্ততলকের কেন্দ্রে থাকে ধাতব আয়ন এবং শীর্ষ বিন্দুতে থাকে 6 টি লিগ্যান্ডের দাতা পরমাণু।

অস্টতলকীয় ${
m MA}_6$, ${
m M(AA)}_3$ বা ${
m MA}_5{
m B}$ সংযুতিসম্পন্ন সবর্গীয় যৌগপুলি জ্যামিতিক সমাবয়বতা প্রদর্শন করে না। কিন্তু ${
m MA}_4{
m B}_2$, ${
m MA}_3{
m B}_3$ ইত্যাদি যৌগের ক্ষেত্রে জ্যামিতিক সমাবয়বতা লক্ষ করা যায়।

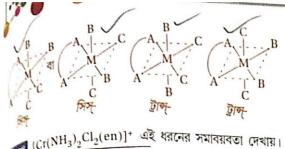

MA4B2 সংযুতির যৌগ: MA4B2 সংযুতিসম্পন্ন সবর্গীয় য়ৌগগুলি
 সিন্ ও ট্রান্স- সমাবয়বর্পে অবস্থান করে। সিন্- সমাবয়ে দুটি B
 লিগ্যান্ড পরস্পারের সঞ্চো 90° কোণে অবস্থান করে কিন্তু ট্রান্স সমাবয়েরে উক্ত লিগ্যান্ড দুটি পরস্পারের সঞ্চো 180° কোণে নত থাকে।

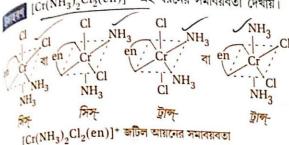
উদাহরণ $[{
m Co(NH_3)}_4{
m Cl}_2]^+$ আয়নটির দুটি সমাবয়ব বর্তমান।




MA3B3 সংযুতির যৌগ: MA3B3 সংযুতিসম্পান জটিল যৌগ দুটি সমাবয়ব গঠন করে। একটি সমাবয়বে 3 টি A লিগান্ত অস্টওলকের যে-কোনো একটি তলের 3টি কৌণিক বিন্দুতে অবস্থান করে অর্ধার অস্টতলকের একটি তল গঠন করে। অনুরূপে, 3 টি B লিগান্তির অস্টতলকেরতল গঠন করে, এর্প সমাবয়বকে ফেসিয়াল সমাবরুব (facial isomer) বলে। অপর সমাবয়বটিতে 3 টি A লিগান্তি বা 3টি B লিগান্তি বা 3টি B লিগান্তি বা বলে। অপর সমাবয়বটিতে করে। এই ধরুকের সমাবয়বকে মেরিডিওনাল সমাবয়ব (meridional isomer) বলে।

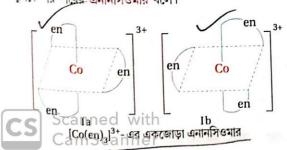
উদাহরণ [Co(NH₃)₃Cl₃] যৌগটি এই প্রকার সমাবয়বতা প্রদর্শন _{করে}

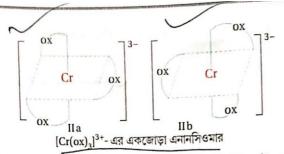



M(AA),b, সংযৃতির যৌগ: M(AA),b, সংযুতিসম্পন্ন স্কানি যৌগগুলি সিস্- ও ট্রান্স- সমাবয়বর্পে অবস্থান করে।

 $igotimes_{M(AA)B_2C_2}$ সংযুতির যৌগ: $M(AA)B_2C_2$ সংযুতিসম্পন্ন স্বর্গীর যৌগগুলি সিস্- ও ট্রান্স- সমাবয়বর্পে অবস্থান করে।

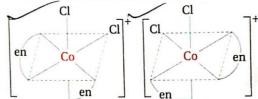
আ কোঅর্ডিনেশন যৌগের আলোকীয় সমাবয়বতা (Optical isomerism in coordination compounds)

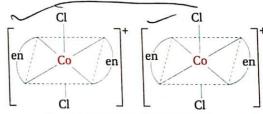

্রব্দির সংযুতিসম্পন্ন দুটি সবগীয় যৌগে লিগ্যান্তগুলি কেন্দ্রীয় ধাতব রাজে চতুর্দিকে যদি এর্পে বিন্যস্ত থাকে যে একটির গঠনাকৃতি অপরটির রুক্তিরে মতো হয়, তবে ওই যৌগদুটিকে আলোকীয় সমাবয়ব সলে।


🚇 চতুর্বর্গীয় যৌগের আলোকীয় সমাবয়বতা

- ্রামতনীয় বর্গাকৃতি গঠনবিশিষ্ট জটিল যৌগগুলির প্রতিসাম্য তল ক্রপ্রিত থাকায় আলোকীয় সমাবয়বতা দেখা যায় না।
- চতুত্তলকীয় গঠনবিশিষ্ট MABCD সংযুতিসম্পন্ন যৌগগুলি আলোকীয় সমাবয়বতা প্রদর্শন করে, কিন্তু এরূপ যৌগের সংখ্যা নগণ্য।

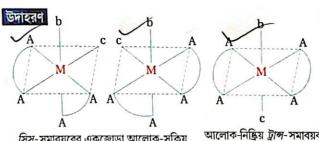
🕼 হড়বর্গীয় যৌগের আলোকীয় সমাবয়বতা


☑ M(AA)₃ সংযৃতির যৌগ (AA=প্রতিসম বাইডেন্টেট লিগ্যান্ড):
রব্প সংযুতিবিশিন্ত দুটি জটিল আয়ন হল [Co(en)₃]³+ এবং
[Cr(ox)₃]³-। এই আয়নগুলির প্রতিটির ক্ষেত্রেই দর্পণ-প্রতিবিদ্ধ
সহস্বযুক্ত এর্প একজোড়া করে গঠনাকৃতি সম্ভব যারা পরস্পর
ইপরিপাতযোগ্য নয় (non-superimposable)। অর্থাৎ, উল্লিখিত
আয়নগুলি আলোকীয় সমাবয়বতা প্রদর্শন করে। Ia ও Ib প্রথমোক্ত
আয়নগুলি আলোকীয় সমাবয়বতা প্রদর্শন করে। Ia ও Ib প্রথমোক্ত
আয়নটির এবং IIa ও IIb শেষোক্ত জটিল আয়নের একজোড়া
আলোকীয় সমাবয়ব। দর্পণ প্রতিবিদ্ধ সদ্বন্ধযুক্ত আলোকীয় সমাবয়বগুলিকে পরস্পারের এনানসিওমার বলে।



M(AA)₂b₂ সংযৃতির যৌগ: এর্প সংযুতিবিশিষ্ট যৌগের দৃটি
 জ্যামিতিক সমাবয়ব (সিস্- ও টাঙ্গ-) বর্তমান (এ সম্পর্কে আগে
 আলোচনা করা হয়েছে)। এদের মধ্যে সিস্- সমাবয়বটি আলোকীয়
 সমাবয়বতা প্রদর্শন করে, কিন্তু টাঙ্গ- সমাবয়বের প্রতিসাম্যতল থাকায়
 আলোকীয় সমাবয়বতা দেখা যায় না।

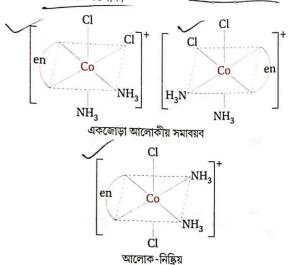
ভিদাহরণ [Co(en)₂Cl₂]+, [Rh(en)₂Cl₂]+



সিস্- [Co(en)₂Cl₂]⁺ জটিল আয়নের একজোড়া আলোক-সক্রিয় সমাবয়ব (এনানসিওমার)

ট্রাল-[Co(en),Cl2]+ জটিল আয়নের দর্পণ প্রতিবিদ্ধ সম্বন্ধযুক্ত একজোড়া গঠনাকৃতি

M(AA)2bc সংযুতিবিশিষ্ট যৌগ: এর্প সংযুতিবিশিষ্ট যৌগেরও দৃটি জ্যামিতিক সমাবয়ব (সিস্- ও ট্রান্স-) বর্তমান। ট্রান্স- সমাবয়বের প্রতিসাম্যতল উপস্থিত থাকায় এটি আলোক-নিষ্কিয়। কিন্তু সিস্-সমাবয়বটি অপ্রতিসম হওয়ায় আলোকীয় সমাবয়বতা প্রদর্শন করে।



সিস্-সমাবয়বের একজোড়া আলোক-সক্রিয় সমাবয়ব (এনানসিওমার) আলোক-নিষ্ক্রিয় *ট্রান্স*-সমাবয়ব (প্রতিসাম্য তল বর্তমান)

াঁ ν $M(AA)b_2c_2$ সংযৃতিবিশিষ্ট যৌগ: এই প্রকারের যৌগগুলি আলোকীয় সমাবয়বতা প্রদর্শন করে।

1. 11. 11 - VII ~ ~ ~ ~

উদাহরণ $[{
m CoCl}_2({
m en})({
m NH}_3)_2]^+$ জটিল আয়নটির একজোড়া এনানসিওমার বর্তমান।

পরিচ্ছেদ 9.8 সংক্রান্ত প্রশ্ন

- [Co(NH₃)₅(ONO)]Cl ও [Co(NH₃)₅NO₂]Cl যৌগ দুটি কী ধরনের সমাবয়বতা প্রদর্শন করে? যৌগ দুটির মধ্যে পার্থক্য নির্পণ করার একটি পম্বতি উল্লেখ করো।
- 2. $[Co(NH_3)_5SO_4]Br$ -এর আয়নায়ন সমাবয়বটির সংকেত লেখো। যৌগটির এর্প সমাবয়বতা প্রদর্শনের কারণ কীং
- 3. ${\rm MA_4}$, ${\rm MA_3B}$, ${\rm MA_2B_2}$, ${\rm MA_2BC}$ সংযুক্তিবিশিষ্ট যৌগগুলি কোনোরূপ জ্যামিতিক সমাবয়বতা প্রদর্শন করে না— উন্তিটি বিচার করো। (যেখানে ${\rm M=}$ কেন্দ্রীয় ধাতব আয়ন, ${\rm A}$, ${\rm B}$, ${\rm C}$, ${\rm D=}$ মনোডেন্টেট লিগ্যান্ড)
- ফেসিয়াল ও মেরিভিওনাল সমাবয়বতা বলতে কী বোঝং MA3B3
 সংযুক্তিসম্পন্ন একটি যৌগের সাহায্যে তা ব্যাখ্যা করো। (য়েখানে
 A, B=মনোডেন্টেট লিগ্যান্ড)
- প্রদত্ত যৌগগৃলি কী ধরনের সমাবয়বতা দেখায়—
 (i) [Co(NH₃),Cl₂]⁺ (ii) [Zn(NH₃),Cl₂] (চতুস্তলকীয়)
- প্রদত্ত যৌগগুলির আয়নায়ন সমাবয়বের সংকৈত লেখো—
 [i) [Ni(en)₂(NO₂)₂]Cl₂ (ii) [Fe(NH₃)₅CN]SO₄

কোঅর্ডিনেশন যৌগের বন্ধনের প্রকৃতি

বিজ্ঞানী ভার্নার কোঅর্ডিনেশন যৌগের গঠন-সংক্রান্ত যে তত্ত্ব উপস্থাপিত করেন তা বিশেষ কোনো মৌলিক নীতির উপর ভিত্তি করে রচিত হয়নি। পরবতীকালে রাসায়নিক বন্ধনের ইলেকট্রনিক তত্ত্ব আবিষ্কারের পর বিজ্ঞানী সিড্উইক ও লাউরি সিম্বান্ত করেন যে ভার্নার প্রস্তাবিত মুখ্য ও গৌণ যোজ্যতা যথাক্রমে আয়নীয় ও সমযোজ্যতা (তথা অসমযোজ্যতা) ছাড়া আর কিছুই নয়।

ভার্নার প্রস্তাবিত তত্ত্ব থেকে যে প্রশ্নগুলির উত্তর পাওয়া যায় না

- কোঅর্ডিনেশন যৌগের গঠন প্রক্রিয়ায় নির্বাচিত কিছু সংখ্যক ধাতব মৌল
 অংশগ্রহণ করে কেন?
- কেন্দ্রীয় ধাতব পরমাণু তথা আয়নের গৌণ যোজ্যতাগুলি ত্রিমাত্রিক দিকে নির্দিষ্টভাবে বিন্যস্ত থাকে কেন?
- কোঅর্ডিনেশন যৌগের চৌম্বকীয় ও আলোকীয় ধর্মের কারণ কী?

কোঅর্ডিনেশন যৌগের বর্ণধন, গঠন ও ধর্মাবলি ব্যাখ্যা করার জন একাধিক আধুনিক তত্ত্ব প্রকাশিত হয়েছে। এখানে কেবলমাত্র দুটি হৈ আলোচনা করা হবে: 1 যোজ্যতা-বর্ণধন তত্ত্ব এবং 2 ক্রিস্টাল ক্লিণ্ড হ

9.9 (Valence Bond Theory)

পাউলিং (L. Pauling)-এর যোজ্যতা-বন্ধন তত্ত্ব (VBT) অনুসারে
পাউলিং ক্লিকটন কর্ম

- াজিলা (১)
 কিন্তুলির ধাতব প্রমাণু প্রথমে উপযুক্ত সংখ্যক ইলেকট্রন বর্জন হর
 কিত্র আয়নে পরিণত হয়। বর্জিত ইলেকট্রনের সংখ্যাই ধাতব আয়নে
 মুখ্য যোজ্যতা নির্দেশ করে।
- ্রা ধাতব আয়নটি প্রয়োজন অনুসারে যোজ্যতা-কক্ষের ইলেকট্নগৃত্তির ধাতব আয়নটি প্রয়োজনীয় সংখ্যক খালি কক্ষক (s, p বা d) পুনর্বিন্যাসের মাধ্যমে প্রয়োজনীয় কিছু অযুগ্ম ইলেকট্রন জোটনে সৃষ্টি করে। এই পুনর্বিন্যাস প্রক্রিয়ায় কিছু অযুগ্ম ইলেকট্রন পরিণত হয় (হুন্ডের নিয়মের বিরুখাচরণ)। মার করা হয়, শক্তিশালী লিগ্যান্ডের প্রভাবে ইলেকট্রনের যুগ্মকরণ ঘটা।
- ার্টা প্রবিপর খালি কক্ষকগুলির সংকরায়ণের ফলে সমসংখ্যা সমশক্তিসম্পন্ন সংকর কক্ষক সৃষ্টি হয়। সংকরায়িত কক্ষকের সংখ্যাই সংশ্লিষ্ট ধাতব আয়নের কোঅর্ডিনেশন সংখ্যা (সবর্গাঙ্ক) নির্দেশ করে।
- সংকর কক্ষকগুলি ত্রিমাত্রিক দিকে নির্দিষ্ট অভিমুখে এমনভাবে প্রসারিত্ত থাকে যাতে সংশ্লিষ্ট জটিল যৌগটি উদ্দিষ্ট জ্যামিতিক গঠন লাভ করে

সবর্গাঙ্ক	সংকরায়ণের প্রকৃতি	জ্যামিতিক আকৃতি
14	sp ³	চতুস্ <mark>তলকীয়</mark>
4	dsp^2	সমতলীয় বৰ্গাকৃতি
5	$sp^{\tilde{3}}d$	ত্রিকোণীয় দ্বি-পিরামিডীর
6	sp^3d^2 , d^2sp^3	অষ্টতলকীয় /

- ত ব -অবিট্যালগুলি সংকরায়ণে অংশগ্রহণ করে সেগুলি অভ্যন্ত্রীন (n-1)d-অবিট্যাল অথবা বহিস্থ nd-অবিট্যাল হতে পার। সংকরায়ণ প্রক্রিয়ায় (n-1)d-অবিট্যাল অংশগ্রহণ করলে উৎপদ্ধ যৌগকে অভ্যন্তরীণ কক্ষকঘটিত জটিল যৌগ (inner orbital complex) এবং nd -অবিট্যাল অংশগ্রহণ করলে উৎপদ্ধ যৌগকে বহিস্থ কক্ষকঘটিত জটিল যৌগ (outer orbital complex) বলা হয়।
- থাতব আয়নের খালি সংকর কক্ষকগুলি লিগ্যান্ড থেকে ইলেইন জোড় গ্রহণ করে উপযুক্ত সংখ্যক L→M সিগ্মা বন্ধন (অসমযোজী) গঠন করে। অন্যভাবে বলা যায়, ধাতব আয়নের খালি সংকর কল্পস্ন সজ্গে লিগ্যান্ডের ইলেকট্রন-পূর্ণ কক্ষকের অভিলেপনে অসমযোজী L→M বন্ধন গঠিত হয়। অভিলেপনের মাত্রা বৃধ্বির সজো বন্দিন শক্তি তথা উৎপন্ন সবর্গীয় যৌগের স্থিতিশীলতা বৃধ্বি পায়।
- এভাবে লিগ্যান্ডগুলি কেন্দ্রীয় ধাতব আয়নের সঙ্গে অসমযোজ্যার মাধ্যমে যুক্ত হয়ে বিশেষ জ্যামিতিক আকৃতিবিশিষ্ট কোঅর্ডিন্দের এন্টিটি তথা জটিল যৌগ গঠন করে।
- ত্রাা) উৎপন্ন যৌগে অযুগ্ম ইলেকট্রন থাকলে এটি প্যারামাগনেটিক র্ম প্রদর্শন করে, অন্যথায় এটি ডায়াম্যাগনেটিক প্রকৃতির হয়।

্বারামাণনেটিক যৌগের টৌম্বক-ন্রামক (magnetic moment),

ক্রারামাণনেটিক যৌগের টৌম্বক-ন্রামক (magnetic moment),

ক্রারামাণনেটিক যৌগের মংখ্যা থেকে কেন্দ্রীয় ধাতব আয়নের সংকরায়ণের

ক্রার্থ স্থা জটিল আয়নের জ্যামিতিক গঠনাকৃতি সম্পর্কে ধারণা করা

র্ব্থ স্বলীয় যৌগের জ্যামিতিক গঠনাকৃতি থেকে ওই যৌগে অযুগ্র

র্বায় স্বলীয় যৌগের জ্যামিতিক গঠনাকৃতি থেকে ওই যৌগে অযুগ্র

র্বায় স্বলীয় যৌগের জ্যামিতিক পঠনাকৃতি থেকে ওই যৌগে অযুগ্র

9,9,1 4 স্বর্গাভকবিশিষ্ট (4 coordinated) জটিল বৌগের গঠন

র সবর্গাঞ্চবিশিষ্ট জটিল যৌগের জ্যামিতিক আকৃতি চতুন্তলকীর অথবা সামতলিক বর্গাকার উভয় প্রকারের হতে পারে। প্রদত্ত সারশিতে যোজ্যতা-বংধন তত্ত্বের ভিত্তিতে চতুন্তলকীয় $[Ni(NH_3)_4]^{2+}$ ও $[ZnCl_4]^{2-}$ এবং সামতলিক বর্গাকার $[Ni(CN)_4]^{2-}$ -প্রর গঠনাকৃতি, গঠন-প্রক্রিয়া এবং চৌম্বকীয় প্রকৃতি বিস্তারিতভাবে আলোচনা করা হল:

		.,	./_
জটিল আয়ন/যৌগ ও তার গঠনাকৃতি		গঠন-প্রক্রিয়া	
জाएम जासन्तर । अप्रतास्त्र नार्टन थ्रकिया: Ni ²⁺		3 <i>d</i>	4s 4p
	NI -পরমাণু $(3d^84s^24p^0)$: 11 11 11 1 1	11
্রিত হয়। প্রথমে বিশ্ব ক্রিক ক্রিক গঠিত হয়, যেগুলি একটি	Ni $^{2+}$ আয়ন $(3d^{8}4s^{0}4p^{0})$: 11 11 1 1 1	
চুড়েলকে চারাট দেশা শিক্ষা কর্ম কর্ম কর্ম কর্ম কর্ম কর্ম করি 4 টি সংকর কক্ষক 4 টি 10 মান্ত্র কর্ম করে 4 টি অসমযোজী বন্ধন গঠনের	Ni ²⁺ আয়ন (সংকরায়িত)	: 11 11 11 1 1 1 4f	সমত্ল্য sp ³ -সংকর কক্ষক
যুনক্ষান-ত্যাপ ব্যব্যম চতুস্তলকীয় আকৃতিবিশিষ্ট [Ni(NH ₃) ₄] ²⁺ জটিল			4NH ₃
प्रशिक्ष करते।	N1 ²⁺ আয়ন	:	XX XX XX XX
আমনটি উৎপন্ন করে। উদ্ধিবিত জটিল আয়ন তথা জটিল যৌগে 2 টি অযুগা ইলেকট্রন	([NI(NH ₃) ₄] ²⁺ আয়ন গঠনের পর)	2 টি অযুগ্ম ইলেকট্রন	4 টি NH ₃ অণু থেকে
জান্নীয় এটি প্যারাম্যাগনেটিক ধর্ম প্রদর্শন করে। যৌগটির	•	Die offerend	প্রাপ্ত 4 জোড়া ইলেকট্রন
চৌম্বক-শ্রামক, $\mu = \sqrt{n(n+2)} = \sqrt{2(2+2)} = 2\sqrt{2}$ BM	[লিগ্যান্ড প্রদত্ত ইলেকট্রন-জোড় (বিপরী	ত ঘূর্ণনবিশিষ্ট)-কে '××' দ্বারা f	
ह्र्डनकीम् [ZnCl ₄] ²⁻ आम्रत्नत गठेन প্रक्रिमाः এएकद्व		3 <i>d</i>	40
$\frac{1}{2n^{2}+(3d^{10})}$ আয়নের sp^{3} -সংকরায়ণের ফলে 4 টি সমতুলা	Zn -পরমাণু (3d ¹⁰ 4s ² 4p ⁰)	: 11 11 11 11 11	TI TI
sp ³ সংকর কক্ষক গঠিত হয়, যেগুলি একটি চতুস্তলকের চারটি কোঁণিক বিন্দুর দিকে প্রসারিত থাকে। এরপর ওই 4টি সংকর	Zn ²⁺ आग्रन(3d ¹⁰ 4s ⁰ 4p ⁰)	: 11 11 11 11 11	sp³-সংকরারণ
ङ्क्क 4টि CI ⁻ আয়ন থেকে 4টি নিঃসঙ্গ ইলেকট্রন-জোড় গ্রহা করে 4টি অসমযোজী বংধন গঠনের মাধ্যমে চতুস্তলকীয়		: 11 11 11 11 11	সমতৃল্য sp³-সংকর কক্ষক
<mark>আকৃতিবিশিষ্ট [ZnCl4]²⁺ জটিল আয়নটি উৎপন্ন করে।</mark>			↓4Cl ⁻
উদ্লিখিত জটিল আয়নে অযুগ্য ইলেকট্রন না থাকায় এ	ট Zn ²⁺ আয়ন ([ZnCl ₄] ²⁺ আয়ন গঠনের পর)	: 11 11 11 11 11	XX XX XX XX
ভায়াম্যাগনেটিক। আয়নটির চৌম্বক-ভ্রামক, $\mu=0$ ।	आयम गठरमंत्र नात्र)	4 कि Cl आयन C	থকে প্রাপ্ত 4 জোড়া ইলেক্ট্রন
শাস্ত্রলিক বর্গাকার [Ni(CN)4]2- আয়নের গঠন প্রক্রিয়		3 <i>d</i>	4s 4p
লিগাভের প্রভাবে $\mathrm{Ni^{2+}}(3d^{8})$ আয়নের $3d$ -কক্ষকের দুর্ণিজাড় ইলেকটুন প্রথমে জোড়বন্ধ হয় $(3d_{x^{2}-y^{2}}$ কক্ষকে			
रिकाष रेलकप्रेनि 3d ₂₂ -कक्षरक स्थानाखतिञ रहा) अर	_{1ং} NI ²⁺ আয়ন (বিজোড় ইলেকট্র-	न : 11 11 11 11	
dsp ² সংকরায়ণের ফলে 4 টি সমতুলা সংকর কক্ষকের সৃ	ষ্ট্র জ্রোড়বম্থ করার পর)		– dsp² সংকরায়ণ ——
<mark>ষ্যা এগুলি সামতলিক বর্গক্ষেত্রের চারটি কৌণিক বিন্দুর দিরে প্রারিত থাকে। পরে ওই 4 টি dsp^2-সংকর কক্ষক 4 টি CN</mark>	Φ	: 11 11 11 11	
আয়ন থেকে 4 টি ইলেকট্রন-জোড় গ্রহণ করে অসমযোজী বয	ন	4	সমতুলা dsp²-সংকর ককক
^{গঠনের} মাধ্যমে [Ni(CN) ₄] ²⁻ জটিল আয়নের সৃষ্টি করে।		410	4CN
ডিপ্রেখা, বল্পেই-সংক্রাহার প্রক্রিয়ায় একট ড	্ল Ni ²⁺ আয়ন ([Ni(CN) ₄] ²⁻ আ	। अन् : 11 11 11 11	XX XX XX XX
দ্বস্থানকারী নিম্নতর কক্ষের $d_{x^2-y^2}$ কক্ষক এবং বহিত্ত	शंक्रत्नत शत्)		4 টি CN वारान श्राटक
্রুপর p _x ও p _y কক্ষক অংশগ্রহণ করে। কোনো অং	Isti		প্রাপ্ত 4 জোড়া ইলেকট্রন
বিশ্বিদ্ধা না থাক্যা এটি ভালমাগ্রনটিক ধর্ম প্রদর্শন করে			

Solve the following problems:

TI [CO (NH3) & SOA] BL JA MINIMINY

5. अपेड क्ष्मुअर्जिस की मुक्सियं अभावांत्रका हिंतामं — () [(०(nH3)405] + 1) [प्राप्तिक क्ष्मुअर्जेस्म की मुक्सियं अभावांत्रका

CS Scanned mith

3. हमातीता उर्धिया अभिग्राष्ट्र अभिग्राष्ट्र किंगि।

3. हमातीता उर्धिया अभिग्राष्ट्र अभिग्राष्ट्र किंगि।