Name of the Teacher: Sutapa Chakrabarty Subject: Chemistry Class for which the note is prepared: Semester-6 Paper: C13T (Inorganic Chemistry) Topic: Organometallic Chemistry Part 3

Comments- Study the whole topic thoroughly.

[**N.B.** - Acknowledgement of indebtedness to Mr.Sibshankar Das, my respected Teacher regarding collection of study materials in Inorganic Chemistry]

i) With no it gives Fecco) (no)2 together with Fecco)8 and Feg (co)12 Fe2 (co) = NO > Fe(co) 2 (NO) 2 + Fe (co) 5 + Fe3 (co) 12 anion is obtained in the reat with the ii) Canbonylate Fecco) + 4 Na MH3 + 2 Na2 [Fe (0)4] +0 in My sot Dhe structure of the molecule is shown Co2(co)8 [Di-Cobaltocta Carbonyl] Preparation : It can be prepared by the reat bluco and co at 220°C and 250 atm 250 atra Co2 (CO) 8 220°C, 20+800 Properties: i) Dris thermally decomposed too than inert atmost to give coy (co)12 (... 2 co2 (co) 8 50° co4 (co) 12 + 40 it's Stix reduced to cobalt carbonyl hydride by the H2 at 165°C and 120 atm pressure. Co2 (co) 8 + 2+2 _165℃ 2+ [(o (co) 4] Stis also reduced by Na in lig NH3 below -7500. - Lig XH3) below-750 2Na [co(co)4] $Co_2(\infty)_8 + 2Na$ iii) It reacts with No at 40° and forms Co(10)3 NO. $c_{02}(c_{0})_{g} \rightarrow 2N0 \longrightarrow c_{0}(c_{0})_{3}(N0) + 2c_{0}$ Structure : The string of the molecule depends on whether this canbonyl is in sol on in solid state. Co2 (co) & in these two states has different strur ay Structured Co2 (co) & in solh . IR study of the solt of the co2(co) & has shown that this molecule has no bruidging carbonyl group is Esp(CA) & in sol has nonbridged structure.

In this structure each to atom is linked Dith four lerminal co groups and with other Co atom by a Co--- Co F-bond. Thus each co atom has four co-co coordinate F-bond and one co-co F.bond . 39 45 4p Co atom 1111111 co (dsp³) co (dsp³) 12 12 12 12 X X X 1 1 CO Co-Co To bond 50 - lonepair So °€ 12 12 12 12 donated by co. $|\uparrow|$ X × × X co fo . co co-- co:

Fig: Non brudge structure of Co2(co)8 in 2014. b> In 2011 State:

IR study of this molecule in the solid stale has indicated that this molecule has bridge structure. Valence shell electron configuration of Co atom in the free stale is 3d74s²4p°, when Co atom forms Co2(0)8 molecule, one of the two electrons of 4s oribital is shifted to 3d oribitals and beinge the valence shell configuration becomes 3d94s 4p°. Now two 3d oribitals one 4s oribital and all 4p oribitals combine together and produced six d3p³ hybrid oribitals. Inree hybrid oribitals are having one electron each While the remaining three hybrid oribitals, are vacant.

Now one singly filled d'sp³ hybrid onbital of both co atoms overlap with both the singly filled sp²hybrid onbital of one bridging carbonyl gri. and formed two co-co bonding. In a similar way other two co-co bonds are also produced by one bridging carbonyl groups. 3rd singly filled d'sp³ hybrid orbital of one co atom overlap with the 3rd d'sp³ hybrid orbital of one other Co atom and produces Co-co bond. Each of the romaining three d'sp³ hybrid orbitals of each co

atom accepts one lonepair of electrons donated by the terminal contonyl groups of and forms co-co Coordinate bond. 32 Co atom 144441111 Co (d'sp3) 12/12/14 XXX co(dsp3) 0000 6000 00 Co-Ca 1 1 X X X 00 00 00 fig: Bridge structure of Co2 ((0)8 molecule in solid state. Ni (10)4 [Nickel tetra carbony Preparation : Stis prepared by passing co over finely devided metallic nickel at a temp below 100°C. $N_1 + 4 co \longrightarrow N_1(co) 4$ Properties : is It read to with H2SOY as follows NI(CO)4 + H2SO4 -> NISO4 + H2+400 is when healed to sove il-gives ni Ni(CO)4 _1802 Ni + 400. iii) Graseous Hu decomposes the solt of Ni(co) 4 evolving NI(co)4+2HU(g) -> NIU2+H2+400. (Sty and co iv) When Ni(co) 4 solt in THE is reduced by Na, Na2 [[Ni4[0]] is formed. 4 Ni(co) 4 +2 Na $\longrightarrow Na_2 [Ni4 (co)_3] + 700$ Structure and Bonding Ni atom 12/12/14/12/12 1412/12 100000 CO CO The of 1R absorption specific of metallic carbonyls We know the strictching frequency (P) is direct proportional to the bond strength . 95- bond length is longer is bond strength is weaker than I will be

	smallerr. If the donation of electricon density from
	metal to T\$ orbital of co increases, so increase
	the C-O bond length and decreases the bond
ŀ	strength and also decreases the value of J. Dhus
	a formal negative charge on a metal carbonyl anion
	results in stightly greater c-o bond lengths, and
	lowers C-0 bond stretching frequency. The variation of the values of I are shown in table.
	Species J(cm ⁻)
	free co 2143
	[Mn(co)] 2000
	[Cri (00)6] 2000
	$[\Lambda(co)e]_{\Theta}$ 7860
	Ti (CO)6]2- 1750
	Therefore as the extent of back bonding donation increases M-C bond order (increases) and co bond order
	decreases.
	eo acts as a ligand. It can act as terminal
	brudge with two metal atom on brudges with three
	metal atoms.
	M-CO IL CO M-HM terrinal H CO M-HM
	terminal bridge with bridge with three metal atoms atoms.
	Drug of the no. of metal. atom bonding with co
	corbonyl to onbital indicates decreases the value of c-o bond strength and also decreases the value of
	T at fall and -
	terminal) Dauby brudging / Supp
	m-c=o M(m/co
	$M - C \equiv 0$ $M = 0$
	a lance from the value of r, we will early of
-	Scanned withand bruidging Carbonyi groups.
	The reasons canner

In the isoelectronic species [In(co)6], [cr(co)6] and [v(co)6] the c-o stretching frequencies on 2000, 2000, and 1860 cmt respectively - Explain.

It has been established that in metal carbonyls the @ M (co 6- bond is formed as are suits of donattion of lonepairs on carbon to an empty Fonbital on metal. The M -> co back do bonding also result from the overlap of filled dr orbital of metal with empty antibonding low empty 7 co Moof co. Thus I and It synergic mechanism of bonding makes the carrbonyl very stable. As the extent of back bonding increases the c-o bond order decreases and M-c bond order increases. Consequently the stretching frequency of the metal carbony will C-0 decreases with increases in the degree of back bonding. Any effect that increases the degree of back bonding V will decreases the c-o stretching frequency.

I In the isoeleelitonic species [Mn(CO)6]⁽¹⁾ [en(CO)6]^O and [V(CO)6]^O, the first contains metal in +1 stale the second contained metal in nontrivial and twind contained metal in -I stale is, the ()Ve charge density on metal is gradually increases. Such increase in electron density on metal will facilitate back bonding and the extent of back bonding increase in the order [Hn(CO)6]⁽¹⁾ $\langle [Cn(CO)6]^{O} \langle [V(CO)6]^{O}]$. The H-c bond order increases and co bond order decreases and consequently the C-O structuring frequencies will as the same order. Dhat is Why in the iso electronic species [Mn(CO)6]⁽¹⁾, [Cn(CO)6] and [V(CO)6]⁽²⁾ the structuring frequencies of co are 2000, 2000, 18600m¹ rught

What happen when dicobalt octacarbonyl is allowed to react with GHA. Calla Co-ordinates to Co atoms in dicobalt octacarbonyl to form the alkyne complex dicobalt actorarbonyl acetalene and two moles of co are eleminated in $C_{2}(CO)_{8} + C_{2}H_{2} \longrightarrow (C_{2}H_{2}) C_{2}(CO)_{6} + 2CO$ riea. -this Elemination of two moles of co indicates that acetylene acts as four electron donor and both pain Wils & electrons are involved in bonding to two 01 co atoms. Metallic Mitrosyl Complex : We know that No molecule cambe represented by the structure N=0. When this molecule looses its unpaired electron on 'r'atom. it is converted into not N=0). Similarly when no molecule accepts an ion electron from metalion (1+n+) it is converted into NO ion [x=0]. Since Not and Not both have electron pair on Natom they can be attached with a triansition metal atom and form the complex compounds. These complex compose are called metallic nitrosyls. Classification of metallic Nitrosyl \mathcal{D} Depending on whether No molecule is present NO or NO in the metallic nilrosyl these complex compound have been classified into the following catagories. Metatlic nitrosyl containing NO[⊕] ion: [Fe(N20) 5 NO]²⁺, [Fe(CN) 5 NO]^{2Θ}
, [Fe (ro)2 (co)2]° are the example of metallic nilrow? Which contain Not ion. The presence of Not gr. in this is confirmed by the fact that IR absorption frequency of Sto @ aproup to the complexes falls in the region 1600-1900 cm

In metallic nitrosyl having NOD ion, at first No molecule loses the unpaired electron presently TIP onbital of 'N' atom and this electrons is transferry to the metal atom so that no molecule is convented into NO® ion and the valency of the metal atomic reduced by one unit ie, Mis I converted into Molion rool ion which is isoelectronic with co molecule NOW donales the lonepair of electrons residing on N-atom to MO ion. Both these sleps can be shown as follows $\begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$ The metal and roto ion. This bond is formed by the overlap of suitably filled metal oribital with the vacant X_{2p}^{\pm} Mo of NO^{\oplus} ion $M \stackrel{\pi}{\rightleftharpoons} N \stackrel{\pi}{\Longrightarrow} 0$: formation of synergic bond b/w M and No Dion. In these nitrosyls M-N-0 bond angle is closed to 180°. and hence these nitrosyls are called linear nitrosyls. » Metallic nitrosyle Containing Notion: [[(() 5 (NO)] 3- and [(() (H3) 5 (NO)] 2+ are the examples of metallic nilrosyls which contain rolion These complexes contain spin paired Cot's ion with. tzgbeg° configuration. The presence of NOO groupin these complexes is confirmed by the fact that the IR absorption frequency of the NOO gr. in these complexes stalls in the region 1200 -1200 cm-1 In the metallic nilitosyk having Notion accepts one electrican from metal ion NO molecule and it itself converted into NOPion. In NOPion 1 NO is sp Tybridized. The two lonepoints of electrons." on NO are I present in two spi hybrid orbitals. CamScanner

When NO° for gets attached with the contral metal atom in nitrossls, one of the longpair placed in on spi hybrid orbital is donaled to the vacant antital of the metal and $M \leftarrow N = 0$ 6-bond is formed. The other lonepair of electrons localed in other spi hybrid bent nitrossl since the M-N-O bond angle in those nitrossls is in the range of 120°-140°. After formation of NO $\rightarrow M$ 6-bond there After formation of NO $\rightarrow M$ 6-bond there is formed by the metal and 200° ion. Diss metal ion orbital with the vacant T_{p}^{n} MO.	Style @
Metallic Nitrosyl Containing and as well as NO® ions There are some metallic nitrosyl in which 'NO' exist as NO® as well as NO®. Fe (NO) 4 is an example of this type of nitrosyls. This complex is represented as [(NO)3 Fe (NO)]° Since NO group absorbs in both the regions 1600 - 1900 cm ⁷ (for NO® ion) and. 100 - 1200 cm ⁷ (for NO® ion)	
Delculation of EAN of the central metal atom in	
metallic nitrosyl compound :	-
Malalliamilan	
compound (donated by donated donated by	
Metallic nitrosyl metal atom by NOT or other atom atom	
= containg NOD ion	
$\frac{1}{1} \left[Fe(H_{2}0)_{5}(NO) \right]^{2+} (26-1) = 25(Fe^{+}) \\ 1 \times 2(N\delta) = 25 \times 2(5H_{2}0) = 10 $	
$\frac{1}{26-2} = 24 (Fe^{+2}) = 2 (xo^{+}) = 2 (xo^{-1}) = 0 $	
$\frac{1}{[Fe(N0)_2(10)_2]} = 26 + 2[Fe^2] = 28 = 2x^2(100) = 4$	
$2^{-1} = 2^{-1} = 4$ 36 (k_r)	
2. Nitrosyl containing NOO ion	
$t_{1}[c_{0}(c_{1})_{5}(m)]^{3-}$ 27-3(c_{1}^{3}) $f_{1}(s_{1})_{5}(m)$ $f_{2}(m)$	Sense Landin
\vec{r} \vec{r} \vec{c} $(MH_3)_5 (MO)^{-12}_{24} (co^{+3}) 2 (MO^{-1}) 5 MT = 10$ 36 Km.	1
CamScanner	

Solve the following problems

1. Explain the structure of con (co) & solution and In the isoelectronic species [Hn(w);]t 2. and [v(co)6], the C-O streching [cr(co)6] Enequency are 2090, 2000 and 1860 un respectively - Explain. 3. What happen when dicebalt octa canbonyl in allowed to react with C2H29 Scanned with CamScanner