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1. Introduction

Angular momentum plays a central role in both classical and quantum mechanics. In

classical mechanics, all isolated systems conserve angular momentum (as well as energy and

linear momentum); this fact reduces considerably the amount of work required in calculating

trajectories of planets, rotation of rigid bodies, and many more.

Similarly, in quantum mechanics, angular momentum plays a central role in under-

standing the structure of atoms, as well as other quantum problems that involve rotational

symmetry.

Like other observable quantities, angular momentum is described in QM by an operator.

This is in fact a vector operator, similar to momentum operator. However, as we will

shortly see, contrary to the linear momentum operator, the three components of the angular

momentum operator do not commute.

In QM, there are several angular momentum operators: the total angular momentum

(usually denoted by ~J), the orbital angular momentum (usually denoted by ~L) and the

intrinsic, or spin angular momentum (denoted by ~S). This last one (spin) has no classical

analogue. Confusingly, the term “angular momentum” can refer to either the total angular

momentum, or to the orbital angular momentum.

The classical definition of the orbital angular momentum, ~L = ~r × ~p can be carried

directly to QM by reinterpreting ~r and ~p as the operators associated with the position and

the linear momentum.

The spin operator, S, represents another type of angular momentum, associated with

“intrinsic rotation” of a particle around an axis; Spin is an intrinsic property of a particle
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(nearly all elementary particles have spin), that is unrelated to its spatial motion. The

existence of spin angular momentum is inferred from experiments, such as the Stern-Gerlach

experiment, in which particles are observed to possess angular momentum that cannot be

accounted for by orbital angular momentum alone.

The total angular momentum, J, combines both the spin and orbital angular momentum

of a particle (or a system), namely ~J = ~L+ ~S.

2. Orbital angular momentum

Consider a particle of mass m, momentum ~p and position vector ~r (with respect to a

fixed origin, ~r = 0). In classical mechanics, the particle’s orbital angular momentum is given

by a vector ~L, defined by
~L = ~r × ~p. (1)

This vector points in a direction that is perpendicular to the plane containing ~r and ~p,

and has a magnitude L = rp sinα, where α is the angle between ~r and ~p. In Cartesian

coordinates, the components of ~L are

Lx = ypz − zpy;

Ly = zpx − xpz;

Lz = xpy − ypx.

(2)

The corresponding QM operators representing Lx, Ly and Lz are obtained by replacing

x, y, z and px, py and pz with the corresponding QM operators, giving

Lx = −i~
(

y ∂
∂z

− z ∂
∂y

)

;

Ly = −i~
(

z ∂
∂x

− x ∂
∂z

)

;

Lz = −i~
(

x ∂
∂y

− y ∂
∂x

)

.

(3)

In a more compact form, this can be written as a vector operator,

~L = −i~(~r × ~∇). (4)

It is easy to verify that ~L is Hermitian.

Using the commutation relations derived for ~x and ~p, the commutation relations between

the different components of ~L are readily derived. For example:

[Lx, Ly] = [(ypz − zpy), (zpx − xpz)] = [ypz, zpx] + [zpy, xpz]− [ypz, xpz]− [zpy, zpx] (5)
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Since y and px commute with each other and with z and pz, the first term reads

[ypz, zpx] = ypzzpx − zpxypz = ypx[pz, z] = −i~ypx (6)

Similarly, the second commutator gives

[zpy, xpz] = zpyxpz − xpzzpy = xpy[z, pz] = i~xpy (7)

The third and forth commutators vanish; we thus find that

[Lx, Ly] = i~(xpy − ypx) = i~Lz. (8)

In a similar way, it is straightforward to show that

[Ly, Lz] = i~Lx (9)

and

[Lz, Lx] = i~Ly (10)

The three equations are equivalent to the vectorial commutation relation:

~L× ~L = i~~L. (11)

Note that this can only be true for operators; since, for regular vectors, clearly ~L× ~L = 0.

The fact that the operators representing the different components of the angular momen-

tum do not commute, implies that it is impossible to obtain definite values for all component

of the angular momentum when measured simultaneously. This means that if the system

is in eigenstate of one component of the angular momentum, it will in general not be an

eigenstate of either of the other two components.

We define the operator representing the square of the magnitude of the orbital angular

momentum by
~L2 = L2

x + L2
y + L2

z. (12)

It is easy to show that ~L2 does commute with each of the three components: Lx, Ly or Lz.

For example (using [L2
x, Lx] = 0):

[~L2, Lx] = [L2
y + L2

z, Lx] = [L2
y, Lx] + [L2

z, Lx]

= Ly[Ly, Lx] + [Ly, Lx]Ly + Lz[Lz, Lx] + [Lz, Lx]Lz

= −i~(LyLz + LzLy) + i~(LzLy + LyLz) = 0.

(13)

Similarly,

[~L2, Ly] = [~L2, Lz] = 0, (14)
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which can be summarized as

[~L2, ~L] = 0. (15)

Physically, this means that one can find simultaneous eigenfunctions of ~L2 and one of the

components of ~L, implying that both the magnitude of the angular momentum and one of

its components can be precisely determined. Once these are known, they fully specify the

angular momentum.

In order to obtain the eigenvalues of ~L2 and one of the components of ~L (typically, Lz),

it is convenient to express the angular momentum operators in spherical polar coordinates:

r, θ, φ, rather than the Cartesian coordinates x, y, z. The spherical coordinates are related

to the Cartesian ones via
x = r sin θ cosφ;

y = r sin θ sinφ;

z = r cos θ.

(16)

After some algebra, one gets:

Lx = −i~
(

− sinφ ∂
∂θ

− cot θ cosφ ∂
∂φ

)

Ly = −i~
(

cosφ ∂
∂θ

− cot θ sinφ ∂
∂φ

)

Lz = −i~ ∂
∂φ
;

~L2 = −~
2
[

1
sin θ

∂
∂θ

(

sin θ ∂
∂θ

)

+ 1
sin2 θ

∂2

∂φ2

]

.

(17)

We thus find that the operators Lx, Ly, Lz and ~L
2 depend on θ and φ only, that is they

are independent on the radial coordinate ~r. All these operators therefore commute with any

function of r,

[Lx, f(r)] = [Ly, f(r)] = [Lz, f(r)] = [L2, f(r)] = 0. (18)

Also, obviously, if a wavefunction depends only on r (but not on θ, φ) it can be simultaneously

an eigenfunction of Lx, Ly, Lz and L2. In all cases, the corresponding eigenvalue will be

0. (This is the only exception to the rule that that eigenvalues of one component (e.g., Lx)

cannot be simultaneously eigenfunctions of the two other components of L).

3. Eigenvalues and eigenfunctions of L2 and Lz

Let us find now the common eigenfunctions to L2 and Lz, for a single particle. The

choice of Lz (rather than, e.g., Lx) is motivated by the simpler expression (see Equation 17).
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3.1. Eigenvalues of Lz

Since, in spherical coordinates Lz depends only on φ, we can denote its eigenvalue by

m~ and the corresponding eigenfunctions by Φm(φ). We thus have:

LzΦm(φ) = m~Φm(φ), (19)

namely

−i ∂
∂φ

Φm(φ) = mΦm(φ). (20)

The solutions to this equation are

Φm(φ) =
1√
2π
eimφ. (21)

This is satisfied for any value of m; however, physically we require the wave function to be

single valued (alternatively: continuous), namely Φm(2π) = Φm(0), from which we find

ei2πm = 1. (22)

This equation is satisfied for m = 0,±1,±2,±3, .... The eigenvalues of the operator Lz are

thus m~, with m being integer (positive or negative) or zero. The number m is called the

magnetic quantum number, due to the role it plays in the motion of charged particles

in magnetic fields.

This means, that when measuring the z-component of an orbital angular momentum,

one can only obtain 0,±~,±2~, .... Since the choice of the z direction was arbitrary, we see

that the component of the orbital angular momentum about any axis is quantized.

The wavefunctions Φm(φ) are orthonormal, namely

∫ 2π

0

Φ⋆
n(φ)Φm(φ)dφ = δnm. (23)

Furthermore, they form a complete set, namely every function f(φ) can be written as

f(φ) =
+∞
∑

m=−∞
amΦm(φ), (24)

where the coefficients am are C-numbers.
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3.2. Simultaneous eigenvalues of L2 and Lz

Let us denote simultaneous eigenfunctions of the operator L2 and Lz as Ylm(θ, φ). We

will write the eigenvalues of L2 as l(l + 1)~2 (from reason which will become clear shortly).

We then have:

L2Ylm(θ, φ) = l(l + 1)~2Ylm(θ, φ) (25)

and

LzYlm(θ, φ) = m~Ylm(θ, φ) (26)

Comparing equation 26 and equation 19, we see that we can separate Ylm(θ, φ),

Ylm(θ, φ) = Θlm(θ)Φm(φ) (27)

where the functions Φm(φ) are given by Equation 21, Φm(φ) =
1√
2π
eimφ.

Using the expression for L2 in spherical coordinates (Equation 17), we write Equation

25 as
[

1

sin θ

∂

∂θ

(

1

sin θ

∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

Ylm(θ, φ) = −l(l + 1)Ylm(θ, φ). (28)

Using the variable separation, as well as equation 21 for Φm(φ), Equation 28 becomes
[

1

sin θ

∂

∂θ

(

1

sin θ

∂

∂θ

)

+

{

l(l + 1)− m2

sin2 θ

}]

Θlm(θ) = 0 (29)

This equation is not easy to solve. In order to proceed, we change variable, writing

w = cos θ and Flm(w) = Θlm(θ). Equation 29 becomes
[

(

1− w2
) d2

dw2
− 2w

d

dw
+ l(l + 1)− m2

1− w2

]

Flm(w) = 0 (30)

This equation is known in mathematics as the Legendre’s associated differential equa-

tion (the m = 0 case is simply called Legendre’s differential equation), honoring the

French mathematician Adrien-Marie Legendre.

The solutions to this equation are given by the associated Legendre’s functions,

Pm
l |(w), which are defined by

Pm
l (w) = (1− w2)|m|/2

(

d

dw

)|m|
Pl(w), (31)

where Pl(w) is known as the lth Legendre polynomial, which is defined by theRodrigues

formula,

Pl(w) =
1

2ll!

(

d

dw

)l

(w2 − 1)l (32)
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(Note that for m = 0, P 0
l (w) = Pl(w)).

In order for Rodrigues formula to make sense, l must be non-negative integer.

Moreover, if |m| > l, then Equation 31 implies Pm
l = 0. Thus, the physically accepted

values of l and m are

l = 0, 1, 2, ...

m = −l,−l + 1, ...,−2,−1, 0, 1, 2, ..., l − 1, l.
(33)

This result can be understood physically as follows: Since L2 = L2
x+L

2
y+L

2
z, the expectation

value of L2 in a given state Ψ is 〈L2〉 = 〈L2
x〉+ 〈L2

y〉+ 〈L2
z〉. Since Lx and Ly are Hermitian,

〈L2
x〉 ≥ 0 and 〈L2

y〉 ≥ 0, and therefore

〈L2〉 ≥ 〈L2
z〉 (34)

For a state Ψ such that its angular part is an eigenfunction of both L2 and Lz, we thus have

from Equations 25, 26 and 34

l(l + 1) ≥ m2, (35)

from which the result in Equation 33, namely that m is restricted to |m| ≤ l follows. The

quantum number l, whose allowed values are given in Equation 33, is called the orbital

angular momentum quantum number.

By using Rodrigues formula (Equation 32), one can immediately find the first few Leg-

endre Polynomials:
P0(w) = 1;

P1(w) =
1
2

d
dw
(w2 − 1) = w;

P2(w) =
1
2
(3w2 − 1) ;

P3(w) =
1
2
(5w3 − 3w) ;

P4(w) =
1
8
(35w4 − 30w2 + 3) ;

P5(w) =
1
8
(63w5 − 70w3 + 15w) ;

(36)

and so on.

Using Equation 31, one can determine the associated Legendre’s functions, Pm
l . The

first few are (inserting again w = cos θ):

P 0
0 = 1;

P 0
1 = cos θ; P 1

1 = sin(θ);

P 0
2 = 1

2
(3 cos2 θ − 1) ; P 1

2 = 3 sin θ cos θ; P 2
2 = 3 sin2 θ;

P 0
3 = 1

2
(5 cos3 θ − 3 cos θ) ; P 1

3 = 3
2
sin θ (5 cos2 θ − 1) ; P 2

3 = 15 sin2 θ cos θ; P 3
3 = 15 sin3 θ;

(37)

etc.
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Fig. 1.— Polar plots of r = abs[Pm
l (θ)] as a function of θ.
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Plots of the first few associated Legendre functions, Pm
l (θ) are shown in Figure 1.

Using Rodrigues formula and integrating by parts, one can show that the associated

Legendre’s functions, Pm
l are orthogonal to each other, but are not normalized to unity,

namely:
∫ +1

−1

dwP
|m|
l (w)P

|m|
l′ (w) =

2

2l + 1

(l + |m|)!
(l − |m|)!δll′ (38)

However, with the use of Equation 38, one can multiply Pm
l (w) with the appropriate normal-

ization factor, and obtain a normalized solution Flm(w) to Equation 30 - up to an uncertain

phase factor of modulus 1.

The corresponding physical solutions to equation 29 Θlm(θ) are given by

Θlm(θ) =







(−1)m
[

(2l+1)
2

(l−m)!
(l+m)!

]1/2

Pm
l (cos θ), m ≥ 0

(−1)mΘl|m|(θ) m < 0.
(39)

These functions are normalized, namely
∫ π

0

Θ⋆
l′m(θ)Θlm(θ) sin(θ)dθ = δll′ . (40)

We can now (finally) write the simultaneous eigenfunctions Ylm(θ, φ) common to the

operators L2 and Lz (see equations 25 and 26) as

Ylm(θ, φ) =







(−1)m
[

(2l+1)
4π

(l−m)!
(l+m)!

]1/2

Pm
l (cos θ)eimφ, m ≥ 0

(−1)mY ⋆
l,−m(θ, φ) m < 0.

(41)

(where we have adopted the commonly use convention for the phase). These functions are

known as spherical harmonics.

The spherical harmonics are normalized to unity on a unit sphere, and are orthogonal:

∫

Y ⋆
l′m′(θ, φ)Ylm(θ, φ)dΩ ≡

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)Y ⋆
l′m′(θ, φ)Ylm(θ, φ) = δll′δmm′ (42)

They further form a complete set, namely, every (arbitrary) function f = f(θ, φ) can be

expanded as

f(θ, φ) =
∞
∑

l=0

+l
∑

m=−l

almYlm(θ, φ) (43)

The lowest order spherical harmonics are summarized in table 1.
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l m Ylm(θ, φ)

0 0 Y0,0 =
1√
4π

1 0 Y1,0 =
(

3
8π

)1/2
cos θ

±1 Y1,1 = ∓
(

3
8π

)1/2
sin θe±iφ

2 0 Y2,0 =
(

5
16π

)1/2
(3 cos2 θ − 1)

±1 Y2,±1 = ∓
(

15
8π

)1/2
sin θ cos θe±iφ

±2 Y2,±2 = ∓
(

15
32π

)1/2
sin2 θe±2iφ

3 0 Y3,0 =
(

7
16π

)1/2
(5 cos3 θ − 3 cos θ)

±1 Y3,±1 = ∓
(

21
64π

)1/2
sin θ (5 cos2 θ − 1) e±iφ

±2 Y3,±2 =
(

105
32π

)1/2
sin2 θ cos θe±2iφ

±3 Y3,±3 = ∓
(

35
64π

)1/2
sin3 θe±3iφ

Table 1: The first few spherical harmonics, Ylm.

3.3. The angular momentum ladder operators

Let us study the effect of the operators Lx and Ly on the eigenfunctions Ylm. For this

purpose, it is convenient to introduce the two operators:

L± = Lx ± iLy. (44)

These operators are not Hermitian, but are mutually adjoint, since L†
+ = Lx − iLy = L−

and L†
− = Lx + iLy = L+ (and we used the fact that Lx and Ly are Hermitian).

Since both Lx and Ly commute with L2, so do L±,

[L2, L±] = 0. (45)

Using the commutation relations between the components of the angular momentum

(Equations 8 - 10), it is straightforward to show that the ladder operators L+ and L− satisfy:

L±L∓ = L2 − L2
z ± ~Lz; (46)

[L+, L−] = 2~Lz; (47)

[Lz, L±] = ±~L±. (48)

Equation 48 can be used with the eigenvalue Equation 26 to obtain

Lz(L±Ylm) = (m± 1)~(L±Ylm) (49)
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Similarly, using the fact that L± commute with L2, from Equation 25 we have

L2(L±Ylm) = l(l + 1)~2(L±Ylm) (50)

This implies that when acting on the common eigenfunction Ylm of L2 and Lz, the

operator L+ produces a new common eigenfunction, for which the eigenvalue of L2 does not

change, (remains l(l + 1)~2), but the eigenvalue of Lz increases by ~, to become (m + 1)~.

Similarly, L−Ylm is a simultaneous eigenfunction of L2 and Lz with eigenvalues l(l + 1)~2

and (m− 1)~. This explains their names - raising and lowering operators.

We therefore find that

L±Ylm = C±
lmYl,m±1, (51)

where C±
lm are constants, whose value we want to find. To determine the value of these

constants, we return to Equation 17, and write L± in spherical polar coordinates,

L± = ~e±iφ

[

± ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

]

(52)

This can be applied to the functions Ylm derived above. The result is

L±Ylm(θ, φ) = ~[l(l + 1)−m(m± 1)]1/2Yl,m±1(θ, φ) (53)

Let us switch now to Dirac’s notation. In this notation, the state described by the

spherical harmonic Ylm(θ, φ) is denoted by the ket |l,m〉.

The expectation values of L± are zero: this follows from the orthonormality of the

spherical harmonics, which can be written as 〈l,m|l′,m′〉 = δll′δmm′ :

〈l,m|L±|l,m〉 = ~[l(l + 1)−m(m± 1)]1/2〈l,m|l,m± 1〉 = 0. (54)

Using Lx = 1
2
(L+ + L−) and Ly = 1

2i
(L+ − L−), this result implies that the expectation

values 〈Lx〉 = 〈Ly〉 = 0. On the other hand,

〈L2
x〉 = 〈L2

y〉 = 〈L2 − L2
z〉 =

1

2
[l(l + 1)−m2]~2. (55)

Interestingly, even when m = ±l - the orbital angular momentum is “parallel” or “anti-

parallel” to the z-axis, its x- and y- components are still not zero, although the average

values of Lx and Ly vanish.
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4. Schrödinger equation in three dimensions, central potential

The knowledge we gained on angular momentum is particularly useful when treating

real life problems. As our world is three dimensional, we need to generalize the treatment of

Schrödinger equation to 3-d.

The time-independent Schrödinger equation becomes

[

− ~
2

2m
∇2 + V

]

ψ = Eψ (56)

where, in 3-d,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (57)

In many problems in physics, the potential is central, namely, V = V (r); this means

that the potential is spherically symmetric, and is not a function of θ or φ. In this type

of systems - the best representative may be the hydrogen atom to be discussed shortly, it is

best to work in spherical coordinates, r, θ, φ.

In spherical coordinates, the laplacian becomes

∇2 =
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

(

∂2

∂φ2

)

. (58)

Comparing to Equation 17, we see that the last two terms of the laplacian are equal to

−L2/~2r2. Thus, we can write the Hamiltonian as

Ĥ = − ~
2

2m
∇2 + V (r) = − ~

2

2m

[

1

r2
∂

∂r

(

r2
∂

∂r

)

− L2

~2r2

]

+ V (r) (59)

and the time-independent Schrödinger equation is

{

− ~
2

2m

[

1

r2
∂

∂r

(

r2
∂

∂r

)

− L2

~2r2

]

+ V (r)

}

ψ(r, θ, φ) = Eψ(r, θ, φ) (60)

In order to proceed, we note that all of the angular momentum operators: Lx, Ly, Lz and

L2 do not operate on the radial variable, r; this can be seen directly by their description in

spherical coordinates, equation 17. This means that all these operators commute with V (r):

[Lz, V (r)] = 0, etc. Furthermore, since Lx, Ly and Lz commute with L2, we conclude that

all of the angular momentum operators commute with the Hamiltonian,

[Ĥ, Lx] = [Ĥ, Ly] = [Ĥ, Lz] = [Ĥ,L2] = 0 (61)
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This means that it is possible to obtain solutions to Schrödinger equation (Equation 60)

which are common eigenfunctions of Ĥ, L2 and Lz.

We already know simultaneous eigenfunctions of L2 and Lz: these are of course the

spherical harmonics, Ylm(θ, φ). Thus, a full solution to Schrödinger equation can be written

as

ψ(r, θ, φ) = REl(r)Ylm(θ, φ). (62)

REl(r) is a radial function of r, which we need to find. The subscripts E and l mark the fact

that in general, we obtain different functions for different values of the energy(E) and the

orbital angular momentum quantum number l. It is independent, though, on the magnetic

quantum number m, as can be seen by inserting this solution into Schrödinger equation (in

which the operator L2 appears explicitly, but not Lz).

We may put the solution in Equation (62) in Schrödinger equation (60), and use the

fact that L2Ylm(θ, φ) = l(l + 1)~2Ylm(θ, φ) (Equation 25), to obtain an equation for REl(r),
[

− ~
2

2m

(

∂2

∂r2
+

2

r

∂

∂r

)

+
l(l + 1)~2

2mr2
+ V (r)

]

REl(r) = EREl(r) (63)

To be physically acceptable, the wave functions must be square integrable, and normal-

ized to 1:
∫ ∞

0

drr2
∫ π

0

dθ sin θ

∫ 2π

0

dφ|ψElm(r, θ, φ)|2 = 1. (64)

We already know that the spherical part, Ylm(θ, φ) is normalized; see Equation 42. Thus,

the radial part of the eigenfunctions must satisfy the normalization condition
∫ ∞

0

drr2|REl(r)|2 = 1. (65)

We may further simplify Equation 63 by changing a variable,

uEl(r) = rREl(r) (66)

Thus, R = u/r, dR/dr = [r(du/dr)− u]/r2, and 1
r2

∂
∂r

(

r2 ∂
∂r

)

u
r
= 1

r
∂2u
∂r2

. Overall, Equation 63

becomes

− ~
2

2m

d2uEl

dr2
+ Veff (r)uEl(r) = EuEl(r) (67)

where

Veff (r) = V (r) +
l(l + 1)~2

2mr2
(68)

is an effective potential; in addition to the interaction potential, V (r) it contains a re-

pulsive centrifugal barrier, (~2/2m)[(l(l + 1)/r2].
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With the inclusion of this potential, Equation 67 has an identical form to the 1-d (time-

independent) Schrödinger equation. The only difference is that it is physically meaningful

only for r > 0, and we must provide the boundary condition at r = 0. The boundary

conditions are provided by the physical requirement that the function REl(r) remains finite

at the origin, r = 0. Since REl(r) = uEl(r)/r, this implies

uEl(0) = 0. (69)

5. The hydrogen atom

Perhaps the most important demonstration of the above analysis (and of quantum

mechanics in general) is the ability to predict the energy levels and wave functions of the

hydrogen atom. This is the simplest atom, that contains one proton and one electron. The

proton is heavy (mp/me = 1836) and is essentially motionless - we can assume it being at

the origin, r = 0). The proton has a positive charge +q, and the electron a negative charge,

−q. We can therefore use Coulumb’s law to calculate the potential energy:

V (r) = − q2

4πǫ0

1

r
(70)

(in SI units).

The radial equation (67) becomes:

− ~
2

2m

d2uEl

dr2
+

[

− q2

4πǫ0

1

r
+
l(l + 1)~2

2mr2

]

uEl(r) = EuEl(r) (71)

Before proceeding to solve this equation, we note the following. At r → ∞, Veff (r) → 0.

This means that for any value of positive energy (E > 0), one could find an acceptable eigen-

function uEl(r). Therefore, there is a continuous spectrum for E > 0, describing scattering

between electron and proton (this will be dealt with in next year’s QM...). We focus here

on solutions for which E < 0. These are called bound states.

We proceed by some change of variables: We write

κ ≡
√
−2mE

~
(72)

(note that E < 0, and so κ is real). Equation 71 becomes

1

κ2
d2uEl

dr2
=

[

1− mq2

2πǫ0~2κ2r
+
l(l + 1)

κ2r2

]

uEl (73)
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We next introduce

ρ = κr; ρ0 =
mq2

2πǫ0~2κ
(74)

and write Equation 73 as

d2uEl

dρ2
=

[

1− ρ0
ρ

+
l(l + 1)

ρ2

]

uEl (75)

We proceed along lines which are somewhat similar to those taken in deriving the SHO.

We begin by examining the asymptotic behavior. We note that when ρ → ∞, Equation 75

is approximately d2uEl/dρ
2 ≈ uEl, which admits the general solution

u(ρ) = Ae−ρ +Beρ.

However, in order for uEl to remain finite as ρ → ∞, we must demand B = 0, implying

uEl(ρ) ∼ Ae−ρ.

On the other hand, as ρ → 0, the centrifugal term dominates (apart when l = 0, but,

as will be seen, the result is valid there too), and one can write

d2uEl

dρ2
≈ l(l + 1)

ρ2
uEl

with the general solution

u(ρ) = Cρl+1 +Dρ−l.

Again, the second term, ρ−l diverges as ρ→ 0, implying that we must demand D = 0. Thus,

uEl(ρ) ∼ Cρl+1

for small ρ.

This discussion motivates another change of variables, writing

uEl(ρ) = ρl+1e−ρv(ρ) (76)

where v(ρ) ≡ vEl(ρ), and the subscripts El are omitted for clarity.

With this change of variables, we have

du

dρ
= ρle−ρ

[

(l + 1− ρ)v + ρ
dv

dρ

]

and
d2u

dρ2
= ρle−ρ

{[

−2l − 2 + ρ+
l(l + 1)

ρ

]

v + 2(l + 1− ρ)
dv

dρ
+ ρ

d2v

dρ2

}
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and Equation 75 becomes

ρ
d2v

dρ2
+ 2(l + 1− ρ)

dv

dρ
+ [ρ0 − 2(l + 1)] v = 0. (77)

We search for solution v(ρ) is terms of power series:

v(ρ) =
∞
∑

j=0

cjρ
j. (78)

We can thus write:
dv

dρ
=

∞
∑

j=0

jcjρ
j−1 =

∞
∑

j=0

(j + 1)cj+1ρ
j, (79)

and
d2v

dρ2
=

∞
∑

j=0

j(j + 1)cj+1ρ
j−1 (80)

similar to the analysis of the SHO, we insert these results into Equation 77, and equate the

coefficients of each individual power law of ρ to write:

j(j + 1)cj+1 + 2(l + 1)(j + 1)cj+1 − 2jcj + [ρ0 − 2(l + 1)]cj = 0,

or

cj+1 =

[

2(j + l + 1)− ρ0
(j + 1)(j + 2l + 2)

]

cj (81)

Similar to the SHO case, we note that for j ≫ {l, ρ0} we have

cj+1 ≈
2

j
cj

which gives cj = (2j/j!)c0, and v(ρ) = c0
∑

j
2j

j!
ρj = c0e

2ρ, from which u(ρ) = c0ρ
l+1eρ; this

of course is unacceptable, as it diverges at large ρ.

This means that the series must terminate, namely there is a maximum integer, jmax

for which c(jmax+1) = 0. From Equation 81 this gives

2(jmax + l + 1)− ρ0 = 0. (82)

We can now define the principle quantum number, n via

n ≡ jmax + l + 1. (83)

Thus, ρ0 = 2n. But ρ0 determines the energy via equations 72 and 74:

E = −~
2κ2

2m
= − mq4

8π2ǫ20~
2ρ20

. (84)
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We therefore conclude that the allowed energies are

En = −
[

m

2~2

(

q2

4πǫ0

)2
]

1

n2
, n = 1, 2, 3, ... (85)

This is the well-known Bohr’s formula.

Using again equation 74, one finds

κ =

(

mq2

4πǫ0~2

)

1

n
=

1

an
, (86)

where

a ≡ 4πǫ0~
2

mq2
= 5.29× 10−11 m (87)

is known as the Bohr’s radius.

The ground state (namely, the state of lowest energy) is obtained by putting n = 1 in

Equation 85. Putting the values of the physical constants, one finds that

E1 = −
[

m

2~2

(

q2

4πǫ0

)2
]

= −13.6 eV (88)

This is the binding energy of the hydrogen atom - the amount of energy one needs to give

to the electron in the hydrogen atom that is in its ground state to ionize the atom (=release

the electron).

Furthermore, E2 = E1/2
2 = E1/4 = −3.4 eV, etc.

5.1. The wavefunctions

Returning to Equation 62, the wavefunctions are given by

ψ(r, θ, φ) = REl(r)Ylm(θ, φ).

where (using Equations 66 and 76)

REl(r) =
1

r
ρl+1e−ρv(ρ). (89)

Here, v(ρ) is given by the polynomial of degree jmax = n− l − 1 (see Equation 83).
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In the ground state, n = 1; Equation 83 forces l = 0 and jmax = 0. Since l = 0, we

known that m = 0 as well (see Equation 35). This means that the wave function is given by

Ψ100 = R10(r)Y00(θ, φ) (90)

Using the recursion formula (Equation 81), with j = 0, leads to c1 = 0; that is, v(ρ) = 0 is

simply a constant. This implies that

R10(r) =
c0
a
e−r/a (91)

where a is given by Equation 87. The normalization constant is derived from
∫∞
0

|R10|2r2dr =
1, and is c0 = 2/

√
a. Using Y00 = 1/

√
4π (see Table 1), the ground state of the hydrogen

atom is

ψ100(r, θ, φ) =
1√
πa3

e−r/a (92)

The next energy level is n = 2, which represents the first excited state. There are, in

fact four different states with this same energy: one state with l = 0, in which case also

m = 0; and l = 1, in which case m = −1, 0,+1. For l = 0, Equation 81 gives c1 = −c0,
c2 = 0, namely v(ρ) = c0(1− ρ). This implies

R20(r) =
c0
2a

(

1− r

2a

)

e−r/2a. (93)

For l = 1, the recursion formula terminates the series after a single term, v(ρ) is constant,

and one finds

R21(r) =
c0
4a2

re−r/2a (94)

and so on.

In fact, one can write

v(ρ) = L2l+1
n−l−1(2ρ), (95)

where

Lp
q−p = (−1)p

(

d

dx

)p

Lq(x) (96)

is an associated Laguerre polynomial, and

Lq(x) ≡ ex
(

d

dx

)p

(exxq) (97)

is known as the qth Laguerre polynomial. I list in table 5.1 the first few radial eigenfunc-

tions of the hydrogen.
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R10 =
2

a3/2
e−r/a

R20 =
1√

2a3/2

(

1− 1
2
r
a

)

e−r/2a

R21 =
1√

24a3/2
r
a
e−r/2a

R30 =
2√

27a3/2

[

1− 2
3
r
a
+ 2

27

(

r
a

)2
]

e−r/3a

R31 =
8

27
√
6a3/2

(

1− 1
6
r
a

) (

r
a

)

e−r/3a

R32 =
4

81
√
30a3/2

(

r
a

)2
e−r/3a

R40 =
1

4a3/2

[

1− 3
4
r
a
+ 1

8

(

r
a

)2 − 1
192

(

r
a

)3
]

e−r/4a

R41 =
√
5

16
√
3a3/2

[

1− 1
4
r
a
+ 1

80

(

r
a

)2
]

(

r
a

)

e−r/4a

R42 =
1

64
√
5a3/2

[

1− 1
12

r
a

] (

r
a

)2
e−r/4a

R43 =
1

768
√
35a3/2

(

r
a

)3
e−r/4a

Table 2: The first few radial wavefunctions for the hydrogen, REl(r).

According to the standard interpretation of the wavefunction, the quantity

|ψnlm(r, θ, φ)|2d~r = ψ⋆
nlm(r, θ, φ)ψnlm(r, θ, φ)r

2dr sin θdθdφ (98)

represents the probability of finding the electron in the volume element d~r, when the system

is in the stationary state specified by the quantum numbers (n, l,m).

Since ψ(r, θ, φ) = REl(r)Ylm(θ, φ) (see Equation 62), the position probability density

|ψnlm(r, θ, φ)|2 is composed of a radial part that depends only on r, and an angular part

that depends only on θ (recall that the dependence on φ disappears).

We can write the radial part as

DEl(r) = r2|REl(r)|2, (99)

which is known as the radial distribution function. In figure 2 I plot the first few radial

functions REl and the radial distribution function.

Finally, in figures 3 – 5 I give a few examples of the full probability density of finding

the electron in (r, θ) for a hydrogen atom, namely

P (r, θ, φ) = |ψnlm(r, θ, φ)|2d~r = ψ⋆
nlm(r, θ, φ)ψnlm(r, θ, φ)r

2dr sin θdθdφ (100)

for few values of the quantum numbers n, l, and m. As is obvious from the discussion above,

this probability is independent on φ, but only on r and θ.

As a final remark, I would add that in the usual spectroscopic notation the quantum

number l is replaced by a letter, according to the following table: Thus, the energy levels
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value of l 0 1 2 3 4

l l l l l
Code letter s p d f g

are denoted by two symbols: the first is the principal quantum number n, and the second is

a letter corresponding to l.

The ground state (n = 1) is denoted by 1s; The first excited state (n = 2) contains

one 2s state, and three 2p state, corresponding to m = −1, 0,+1 - so total 4 states; the

second excited state contains one 3s state, three 3p states and five 3d states, with m =

−2,−1, 0,+1,+2, so total of 9 states; etc.
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Fig. 2.— Radial functions REl(r) (blue) and radial distribution functions DEl(r) = r2R2
El(r)

(green) for the hydrogen atom. The radii r are normalized to the Bohr’s radius a.
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(a) |Ψ100|2d~r (b) |Ψ100|2d~r

(c) |Ψ200|2d~r (d) |Ψ200|2d~r

(e) |Ψ210|2d~r (f) |Ψ210|2d~r

Fig. 3.— Probability density P (r, θ, φ) of finding the electron in the Hydrogen atom at r, θ.

The radius r is normalized to Bohr’s radius a. Left are 3-d plots; right: same plots in 2d.



– 23 –

(a) |Ψ211|2d~r (b) |Ψ211|2d~r

(c) |Ψ300|2d~r (d) |Ψ300|2d~r

(e) |Ψ310|2d~r (f) |Ψ310|2d~r

Fig. 4.— Same as in Figure 3.
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(a) |Ψ320|2d~r (b) |Ψ320|2d~r

(c) |Ψ321|2d~r (d) |Ψ321|2d~r

(e) |Ψ322|2d~r (f) |Ψ322|2d~r

Fig. 5.— Same as in Figure 3.


