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Molecular structure

The concepts developed in Chapter 10, particularly those of orbitals, can be extended to
a description of the electronic structures of molecules. There are two principal quantum 
mechanical theories of molecular electronic structure. In valence-bond theory, the starting
point is the concept of the shared electron pair. We see how to write the wavefunction for
such a pair, and how it may be extended to account for the structures of a wide variety 
of molecules. The theory introduces the concepts of σ and π bonds, promotion, and 
hybridization that are used widely in chemistry. In molecular orbital theory (with which the
bulk of the chapter is concerned), the concept of atomic orbital is extended to that of 
molecular orbital, which is a wavefunction that spreads over all the atoms in a molecule.

In this chapter we consider the origin of the strengths, numbers, and three-dimensional
arrangement of chemical bonds between atoms. The quantum mechanical descrip-
tion of chemical bonding has become highly developed through the use of computers,
and it is now possible to consider the structures of molecules of almost any complex-
ity. We shall concentrate on the quantum mechanical description of the covalent
bond, which was identified by G.N. Lewis (in 1916, before quantum mechanics was
fully established) as an electron pair shared between two neighbouring atoms. We
shall see, however, that the other principal type of bond, an ionic bond, in which the
cohesion arises from the Coulombic attraction between ions of opposite charge, is
also captured as a limiting case of a covalent bond between dissimilar atoms. In fact,
although the Schrödinger equation might shroud the fact in mystery, all chemical
bonding can be traced to the interplay between the attraction of opposite charges, the
repulsion of like charges, and the effect of changing kinetic energy as the electrons are
confined to various regions when bonds form.

There are two major approaches to the calculation of molecular structure, valence-
bond theory (VB theory) and molecular orbital theory (MO theory). Almost all
modern computational work makes use of MO theory, and we concentrate on that
theory in this chapter. Valence-bond theory, though, has left its imprint on the lan-
guage of chemistry, and it is important to know the significance of terms that chemists
use every day. Therefore, our discussion is organized as follows. First, we set out the
concepts common to all levels of description. Then we present VB theory, which gives
us a simple qualitative understanding of bond formation. Next, we present the basic
ideas of MO theory. Finally, we see how computational techniques pervade all current
discussions of molecular structure, including the prediction of chemical reactivity.

The Born–Oppenheimer approximation
All theories of molecular structure make the same simplification at the outset. Whereas
the Schrödinger equation for a hydrogen atom can be solved exactly, an exact solution
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11.1 HOMONUCLEAR DIATOMIC MOLECULES 363

is not possible for any molecule because the simplest molecule consists of three particles
(two nuclei and one electron). We therefore adopt the Born–Oppenheimer approx-
imation in which it is supposed that the nuclei, being so much heavier than an elec-
tron, move relatively slowly and may be treated as stationary while the electrons move
in their field. We can therefore think of the nuclei as being fixed at arbitrary locations,
and then solve the Schrödinger equation for the wavefunction of the electrons alone.

The approximation is quite good for ground-state molecules, for calculations sug-
gest that the nuclei in H2 move through only about 1 pm while the electron speeds
through 1000 pm, so the error of assuming that the nuclei are stationary is small.
Exceptions to the approximation’s validity include certain excited states of poly-
atomic molecules and the ground states of cations; both types of species are important
when considering photoelectron spectroscopy (Section 11.4) and mass spectrometry.

The Born–Oppenheimer approximation allows us to select an internuclear separa-
tion in a diatomic molecule and then to solve the Schrödinger equation for the elec-
trons at that nuclear separation. Then we choose a different separation and repeat the
calculation, and so on. In this way we can explore how the energy of the molecule
varies with bond length (in polyatomic molecules, with angles too) and obtain a
molecular potential energy curve (Fig. 11.1). When more than one molecular para-
meter is changed in a polyatomic molecule, we obtain a potential energy surface. It 
is called a potential energy curve because the kinetic energy of the stationary nuclei 
is zero. Once the curve has been calculated or determined experimentally (by using
the spectroscopic techniques described in Chapters 13 and 14), we can identify the
equilibrium bond length, Re, the internuclear separation at the minimum of the
curve, and the bond dissociation energy, D0, which is closely related to the depth, De,
of the minimum below the energy of the infinitely widely separated and stationary
atoms.

Valence-bond theory

Valence-bond theory was the first quantum mechanical theory of bonding to be 
developed. The language it introduced, which includes concepts such as spin pairing,
orbital overlap, σ and π bonds, and hybridization, is widely used throughout chemistry,
especially in the description of the properties and reactions of organic compounds.
Here we summarize essential topics of VB theory that are familiar from introductory
chemistry and set the stage for the development of MO theory.

11.1 Homonuclear diatomic molecules

In VB theory, a bond is regarded as forming when an electron in an atomic orbital on
one atom pairs its spin with that of an electron in an atomic orbital on another atom.
To understand why this pairing leads to bonding, we have to examine the wavefunc-
tion for the two electrons that form the bond. We begin by considering the simplest
possible chemical bond, the one in molecular hydrogen, H2.

The spatial wavefunction for an electron on each of two widely separated H atoms
is

ψ = χH1sA
(r1)χH1sB

(r2)

if electron 1 is on atom A and electron 2 is on atom B; in this chapter we use χ (chi) to
denote atomic orbitals. For simplicity, we shall write this wavefunction as ψ = A(1)B(2).
When the atoms are close, it is not possible to know whether it is electron 1 that is 
on A or electron 2. An equally valid description is therefore ψ = A(2)B(1), in which
electron 2 is on A and electron 1 is on B. When two outcomes are equally probable,

Comment 11.1

The dissociation energy differs from the
depth of the well by an energy equal to
the zero-point vibrational energy of the
bonded atoms: D0 = De − 1–2 $ω , where ω
is the vibrational frequency of the bond
(Section 13.9).
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Fig. 11.1 A molecular potential energy
curve. The equilibrium bond length
corresponds to the energy minimum.
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364 11 MOLECULAR STRUCTURE

quantum mechanics instructs us to describe the true state of the system as a super-
position of the wavefunctions for each possibility (Section 8.5d), so a better descrip-
tion of the molecule than either wavefunction alone is the (unnormalized) linear
combination

ψ = A(1)B(2) ± A(2)B(1) (11.1)

It turns out that the combination with lower energy is the one with a + sign, so the 
valence-bond wavefunction of the H2 molecule is

ψ = A(1)B(2) + A(2)B(1) (11.2)

The formation of the bond in H2 can be pictured as due to the high probability that
the two electrons will be found between the two nuclei and hence will bind them 
together. More formally, the wave pattern represented by the term A(1)B(2) interferes
constructively with the wave pattern represented by the contribution A(2)B(1), and
there is an enhancement in the value of the wavefunction in the internuclear region
(Fig. 11.2).

The electron distribution described by the wavefunction in eqn 11.2 is called a σ
bond. A σ bond has cylindrical symmetry around the internuclear axis, and is 
so called because, when viewed along the internuclear axis, it resembles a pair of 
electrons in an s orbital (and σ is the Greek equivalent of s).

A chemist’s picture of a covalent bond is one in which the spins of two electrons
pair as the atomic orbitals overlap. The origin of the role of spin is that the wavefunc-
tion given in eqn 11.2 can be formed only by a pair of electrons with opposed spins.
Spin pairing is not an end in itself: it is a means of achieving a wavefunction (and the
probability distribution it implies) that corresponds to a low energy.

Justification 11.1 Electron pairing in VB theory

The Pauli principle requires the wavefunction of two electrons to change sign when
the labels of the electrons are interchanged (see Section 10.4b). The total VB wave-
function for two electrons is

ψ(1,2) = {A(1)B(2) + A(2)B(1)}σ(1,2)

where σ represents the spin component of the wavefunction. When the labels 1 and
2 are interchanged, this wavefunction becomes

ψ(2,1) = {A(2)B(1) + A(1)B(2)}σ(2,1) = {A(1)B(2) + A(2)B(1)}σ(2,1)

The Pauli principle requires that ψ(2,1) = −ψ(1,2), which is satisfied only if σ(2,1)
= −σ(1,2). The combination of two spins that has this property is

σ−(1,2) = (1/21/2){α(1)β(2) − α(2)β(1)}

which corresponds to paired electron spins (Section 10.7). Therefore, we conclude
that the state of lower energy (and hence the formation of a chemical bond) is
achieved if the electron spins are paired.

The VB description of H2 can be applied to other homonuclear diatomic molecules,
such as nitrogen, N2. To construct the valence bond description of N2, we consider the
valence electron configuration of each atom, which is 2s22px

12py
12pz

1. It is conventional
to take the z-axis to be the internuclear axis, so we can imagine each atom as having a
2pz orbital pointing towards a 2pz orbital on the other atom (Fig. 11.3), with the 2px

and 2py orbitals perpendicular to the axis. A σ bond is then formed by spin pairing 
between the two electrons in the two 2pz orbitals. Its spatial wavefunction is given by
eqn 11.2, but now A and B stand for the two 2pz orbitals.

A B(1) (2)

A B(2) (1)

A B A B(1) (2) + (2) (1)
Enhanced
electron density

Fig. 11.2 It is very difficult to represent
valence-bond wavefunctions because they
refer to two electrons simultaneously.
However, this illustration is an attempt.
The atomic orbital for electron 1 is
represented by the black contours, and that
of electron 2 is represented by the blue
contours. The top illustration represents
A(1)B(2), and the middle illustration
represents the contribution A(2)B(1).
When the two contributions are
superimposed, there is interference
between the black contributions and
between the blue contributions, resulting
in an enhanced (two-electron) density in
the internuclear region.

Fig. 11.3 The orbital overlap and spin
pairing between electrons in two collinear p
orbitals that results in the formation of a 
σ bond.
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The remaining 2p orbitals cannot merge to give σ bonds as they do not have cylin-
drical symmetry around the internuclear axis. Instead, they merge to form two π
bonds. A π bond arises from the spin pairing of electrons in two p orbitals that 
approach side-by-side (Fig. 11.4). It is so called because, viewed along the inter-
nuclear axis, a π bond resembles a pair of electrons in a p orbital (and π is the Greek
equivalent of p).

There are two π bonds in N2, one formed by spin pairing in two neighbouring 2px

orbitals and the other by spin pairing in two neighbouring 2py orbitals. The overall
bonding pattern in N2 is therefore a σ bond plus two π bonds (Fig. 11.5), which is con-
sistent with the Lewis structure :N.N: for nitrogen.

11.2 Polyatomic molecules

Each σ bond in a polyatomic molecule is formed by the spin pairing of electrons 
in atomic orbitals with cylindrical symmetry about the relevant internuclear axis.
Likewise, π bonds are formed by pairing electrons that occupy atomic orbitals of the
appropriate symmetry.

The VB description of H2O will make this clear. The valence electron configuration
of an O atom is 2s22p2

x2p1
y 2p1

z. The two unpaired electrons in the O2p orbitals can each
pair with an electron in an H1s orbital, and each combination results in the formation
of a σ bond (each bond has cylindrical symmetry about the respective O-H inter-
nuclear axis). Because the 2py and 2pz orbitals lie at 90° to each other, the two σ bonds
also lie at 90° to each other (Fig. 11.6). We can predict, therefore, that H2O should be
an angular molecule, which it is. However, the theory predicts a bond angle of 90°,
whereas the actual bond angle is 104.5°.

Self-test 11.1 Use valence-bond theory to suggest a shape for the ammonia
molecule, NH3.

[A trigonal pyramidal molecule with each N-H bond 90°; experimental: 107°]

Another deficiency of VB theory is its inability to account for carbon’s tetravalence
(its ability to form four bonds). The ground-state configuration of C is 2s22p1

x2p1
y,

which suggests that a carbon atom should be capable of forming only two bonds, not
four. This deficiency is overcome by allowing for promotion, the excitation of an elec-
tron to an orbital of higher energy. In carbon, for example, the promotion of a 2s elec-
tron to a 2p orbital can be thought of as leading to the configuration 2s12p1

x 2p1
y2p1

z,
with four unpaired electrons in separate orbitals. These electrons may pair with four
electrons in orbitals provided by four other atoms (such as four H1s orbitals if the
molecule is CH4), and hence form four σ bonds. Although energy was required to
promote the electron, it is more than recovered by the promoted atom’s ability to
form four bonds in place of the two bonds of the unpromoted atom. Promotion, and
the formation of four bonds, is a characteristic feature of carbon because the promo-
tion energy is quite small: the promoted electron leaves a doubly occupied 2s orbital
and enters a vacant 2p orbital, hence significantly relieving the electron–electron 
repulsion it experiences in the former. However, we need to remember that promo-
tion is not a ‘real’ process in which an atom somehow becomes excited and then forms
bonds: it is a notional contribution to the overall energy change that occurs when
bonds form.

The description of the bonding in CH4 (and other alkanes) is still incomplete 
because it implies the presence of three σ bonds of one type (formed from H1s and C2p

Internuclear
axis

Nodal
plane

Fig. 11.4 A π bond results from orbital
overlap and spin pairing between electrons
in p orbitals with their axes perpendicular
to the internuclear axis. The bond has two
lobes of electron density separated by a
nodal plane.

Fig. 11.5 The structure of bonds in a
nitrogen molecule: there is one σ bond and
two π bonds. As explained later, the overall
electron density has cylindrical symmetry
around the internuclear axis.

O

H

H

Fig. 11.6 A first approximation to the
valence-bond description of bonding in an
H2O molecule. Each σ bond arises from the
overlap of an H1s orbital with one of the
O2p orbitals. This model suggests that the
bond angle should be 90°, which is
significantly different from the
experimental value.
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orbitals) and a fourth σ bond of a distinctly different character (formed from H1s and
C2s). This problem is overcome by realizing that the electron density distribution in
the promoted atom is equivalent to the electron density in which each electron occu-
pies a hybrid orbital formed by interference between the C2s and C2p orbitals. The
origin of the hybridization can be appreciated by thinking of the four atomic orbitals
centred on a nucleus as waves that interfere destructively and constructively in differ-
ent regions, and give rise to four new shapes.

The specific linear combinations that give rise to four equivalent hybrid orbitals are

h1 = s + px + py + pz h2 = s − px − py + pz

h3 = s − px + py − pz h4 = s + px − py − pz (11.3)

As a result of the interference between the component orbitals, each hybrid orbital
consists of a large lobe pointing in the direction of one corner of a regular tetrahedron
(Fig. 11.7). The angle between the axes of the hybrid orbitals is the tetrahedral angle,
109.47°. Because each hybrid is built from one s orbital and three p orbitals, it is called
an sp3 hybrid orbital.

It is now easy to see how the valence-bond description of the CH4 molecule leads to
a tetrahedral molecule containing four equivalent C-H bonds. Each hybrid orbital 
of the promoted C atom contains a single unpaired electron; an H1s electron can 
pair with each one, giving rise to a σ bond pointing in a tetrahedral direction. For 
example, the (un-normalized) wavefunction for the bond formed by the hybrid 
orbital h1 and the 1sA orbital (with wavefunction that we shall denote A) is

ψ = h1(1)A(2) + h1(2)A(1)

Because each sp3 hybrid orbital has the same composition, all four σ bonds are iden-
tical apart from their orientation in space (Fig. 11.8).

A hybrid orbital has enhanced amplitude in the internuclear region, which arises
from the constructive interference between the s orbital and the positive lobes of the p
orbitals (Fig. 11.9). As a result, the bond strength is greater than for a bond formed

Comment 11.2

A characteristic property of waves is 
that they interfere with one another,
resulting in a greater displacement
where peaks or troughs coincide, giving
rise to constructive interference, and a
smaller displacement where peaks
coincide with troughs, giving rise to
destructive interference. The physics of
waves is reviewed in Appendix 3.

109.47°

Fig. 11.7 An sp3 hybrid orbital formed from
the superposition of s and p orbitals on the
same atom. There are four such hybrids:
each one points towards the corner of a
regular tetrahedron. The overall electron
density remains spherically symmetrical.

C

H

Fig. 11.8 Each sp3 hybrid orbital forms a σ
bond by overlap with an H1s orbital
located at the corner of the tetrahedron.
This model accounts for the equivalence of
the four bonds in CH4.

Constructive
interference

+

–

+

Resultant

2p

2s Destructive
interference

Fig. 11.9 A more detailed representation of
the formation of an sp3 hybrid by
interference between wavefunctions
centred on the same atomic nucleus. 
(To simplify the representation, we have
ignored the radial node of the 2s orbital.)
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from an s or p orbital alone. This increased bond strength is another factor that helps
to repay the promotion energy.

Hybridization can also be used to describe the structure of an ethene molecule,
H2C=CH2, and the torsional rigidity of double bonds. An ethene molecule is planar,
with HCH and HCC bond angles close to 120°. To reproduce the σ bonding struc-
ture, we promote each C atom to a 2s12p3 configuration. However, instead of using all
four orbitals to form hybrids, we form sp2 hybrid orbitals:

h1 = s + 21/2py h2 = s + ( 3–2 )1/2px − ( 1–2 )1/2py h3 = s − ( 3–2 )1/2px − ( 1–2 )1/2py (11.4)

that lie in a plane and point towards the corners of an equilateral triangle (Fig. 11.10).
The third 2p orbital (2pz) is not included in the hybridization; its axis is perpendicu-
lar to the plane in which the hybrids lie. As always in superpositions, the proportion
of each orbital in the mixture is given by the square of the corresponding coefficient.
Thus, in the first of these hybrids the ratio of s to p contributions is 1:2. Similarly, the
total p contribution in each of h2 and h3 is 3–2 + 1–2 = 2, so the ratio for these orbitals is
also 1:2. The different signs of the coefficients ensure that constructive interference
takes place in different regions of space, so giving the patterns in the illustration.

We can now describe the structure of CH2=CH2 as follows. The sp2-hybridized C
atoms each form three σ bonds by spin pairing with either the h1 hybrid of the other
C atom or with H1s orbitals. The σ framework therefore consists of C-H and C-C σ
bonds at 120° to each other. When the two CH2 groups lie in the same plane, the two
electrons in the unhybridized p orbitals can pair and form a π bond (Fig. 11.11). The
formation of this π bond locks the framework into the planar arrangement, for any
rotation of one CH2 group relative to the other leads to a weakening of the π bond
(and consequently an increase in energy of the molecule).

A similar description applies to ethyne, HC.CH, a linear molecule. Now the C
atoms are sp hybridized, and the σ bonds are formed using hybrid atomic orbitals of
the form

h1 = s + pz h2 = s − pz (11.5)

These two orbitals lie along the internuclear axis. The electrons in them pair either
with an electron in the corresponding hybrid orbital on the other C atom or with an
electron in one of the H1s orbitals. Electrons in the two remaining p orbitals on each
atom, which are perpendicular to the molecular axis, pair to form two perpendicular
π bonds (Fig. 11.12).

Self-test 11.2 Hybrid orbitals do not always form bonds. They may also contain
lone pairs of electrons. Use valence-bond theory to suggest possible shapes for the
hydrogen peroxide molecule, H2O2.

[Each H-O-O bond angle is predicted to be approximately 109° (experi-
mental: 94.8°); rotation around the O-O bond is possible, so the molecule 

interconverts between planar and non-planar geometries at high temperatures.]

Other hybridization schemes, particularly those involving d orbitals, are often
invoked in elementary work to be consistent with other molecular geometries 
(Table 11.1). The hybridization of N atomic orbitals always results in the formation of
N hybrid orbitals, which may either form bonds or may contain lone pairs of elec-
trons. For example, sp3d2 hybridization results in six equivalent hybrid orbitals point-
ing towards the corners of a regular octahedron and is sometimes invoked to account
for the structure of octahedral molecules, such as SF6.

(a)

(b)

Fig. 11.10 (a) An s orbital and two p orbitals
can be hybridized to form three equivalent
orbitals that point towards the corners of
an equilateral triangle. (b) The remaining,
unhybridized p orbital is perpendicular to
the plane.

Fig. 11.11 A representation of the structure
of a double bond in ethene; only the π
bond is shown explicitly.

Fig. 11.12 A representation of the structure
of a triple bond in ethyne; only the π bonds
are shown explicitly. The overall electron
density has cylindrical symmetry around
the axis of the molecule.
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Molecular orbital theory

In MO theory, it is accepted that electrons should not be regarded as belonging to par-
ticular bonds but should be treated as spreading throughout the entire molecule. This
theory has been more fully developed than VB theory and provides the language that
is widely used in modern discussions of bonding. To introduce it, we follow the same
strategy as in Chapter 10, where the one-electron H atom was taken as the fundamental
species for discussing atomic structure and then developed into a description of many-
electron atoms. In this chapter we use the simplest molecular species of all, the hydrogen
molecule-ion, H2

+, to introduce the essential features of bonding, and then use it as a
guide to the structures of more complex systems. To that end, we will progress to
homonuclear diatomic molecules, which, like the H2

+ molecule-ion, are formed from
two atoms of the same element, then describe heteronuclear diatomic molecules,
which are diatomic molecules formed from atoms of two different elements (such as
CO and HCl), and end with a treatment of polyatomic molecules that forms the basis
for modern computational models of molecular structure and chemical reactivity.

11.3 The hydrogen molecule-ion

The hamiltonian for the single electron in H2
+ is

H = − ∇2
1 + V V = − + − (11.6)

where rA1 and rB1 are the distances of the electron from the two nuclei (1) and R is the
distance between the two nuclei. In the expression for V, the first two terms in paren-
theses are the attractive contribution from the interaction between the electron and
the nuclei; the remaining term is the repulsive interaction between the nuclei.

The one-electron wavefunctions obtained by solving the Schrödinger equation 
Hψ = Eψ are called molecular orbitals (MO). A molecular orbital ψ gives, through

D
F

1

R

1

rB1

1

rA1

A
C

e2

4πε0

$2

2me

Table 11.1* Some hybridization schemes

Coordination number Arrangement Composition

2 Linear sp, pd, sd

Angular sd

3 Trigonal planar sp2, p2d

Unsymmetrical planar spd

Trigonal pyramidal pd 2

4 Tetrahedral sp3, sd 3

Irregular tetrahedral spd2, p3d, dp3

Square planar p2d2, sp2d

5 Trigonal bipyramidal sp3d, spd2

Tetragonal pyramidal sp2d2, sd4, pd4, p3d2

Pentagonal planar p2d3

6 Octahedral sp3d2

Trigonal prismatic spd4, pd5

Trigonal antiprismatic p3d2

* Source: H. Eyring, J. Walter, and G.E. Kimball, Quantum chemistry, Wiley (1944).

rA1 rB1

RA B

1
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(a)

(b)

Fig. 11.13 (a) The amplitude of the bonding
molecular orbital in a hydrogen molecule-
ion in a plane containing the two nuclei
and (b) a contour representation of the
amplitude.

Exploration Plot the 1σ orbital for
different values of the internuclear

distance. Point to the features of the 1σ
orbital that lead to bonding.

Boundary
surface

Nuclei

Fig. 11.14 A general indication of the shape
of the boundary surface of a σ orbital.

the value of |ψ |2, the distribution of the electron in the molecule. A molecular orbital
is like an atomic orbital, but spreads throughout the molecule.

The Schrödinger equation can be solved analytically for H2
+ (within the Born–

Oppenheimer approximation), but the wavefunctions are very complicated functions;
moreover, the solution cannot be extended to polyatomic systems. Therefore, we
adopt a simpler procedure that, while more approximate, can be extended readily to
other molecules.

(a) Linear combinations of atomic orbitals

If an electron can be found in an atomic orbital belonging to atom A and also in an
atomic orbital belonging to atom B, then the overall wavefunction is a superposition
of the two atomic orbitals:

ψ± = N(A ± B) (11.7)

where, for H2
+, A denotes χH1sA

, B denotes χH1sB
, and N is a normalization factor. 

The technical term for the superposition in eqn 11.7 is a linear combination of
atomic orbitals (LCAO). An approximate molecular orbital formed from a linear
combination of atomic orbitals is called an LCAO-MO. A molecular orbital that has
cylindrical symmetry around the internuclear axis, such as the one we are discussing,
is called a σ orbital because it resembles an s orbital when viewed along the axis 
and, more precisely, because it has zero orbital angular momentum around the 
internuclear axis.

Example 11.1 Normalizing a molecular orbital

Normalize the molecular orbital ψ+ in eqn 11.7.

Method We need to find the factor N such that

�ψ*ψ dτ = 1

To proceed, substitute the LCAO into this integral, and make use of the fact that
the atomic orbitals are individually normalized.

Answer When we substitute the wavefunction, we find

�ψ*ψ dτ = N2 �A2dτ + �B2dτ + 2�AB dτ = N2(1 + 1 + 2S)

where S = ∫AB dτ. For the integral to be equal to 1, we require

N =

In H2
+, S ≈ 0.59, so N = 0.56.

Self-test 11.3 Normalize the orbital ψ− in eqn 11.7.
[N = 1/{2(1 − S)}1/2, so N = 1.10]

Figure 11.13 shows the contours of constant amplitude for the two molecular 
orbitals in eqn 11.7, and Fig. 11.14 shows their boundary surfaces. Plots like these 
are readily obtained using commercially available software. The calculation is quite
straightforward, because all we need do is feed in the mathematical forms of the two
atomic orbitals and then let the program do the rest. In this case, we use

1

{2(1 + S)}1/2

5
6
7

1
2
3
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A = B = (11.8)

and note that rA and rB are not independent (2), but related by the law of cosines (see
Comment 11.3):

rB = {rA
2 + R2 − 2rAR cos θ}1/2 (11.9)

To make this plot, we have taken N2 = 0.31 (Example 11.1).

(b) Bonding orbitals

According to the Born interpretation, the probability density of the electron in H2
+ is

proportional to the square modulus of its wavefunction. The probability density cor-
responding to the (real) wavefunction ψ+ in eqn 11.7 is

ψ 2
+ = N2(A2 + B2 + 2AB) (11.10)

This probability density is plotted in Fig. 11.15.
An important feature of the probability density becomes apparent when we exam-

ine the internuclear region, where both atomic orbitals have similar amplitudes. Accord-
ing to eqn 11.10, the total probability density is proportional to the sum of

1 A2, the probability density if the electron were confined to the atomic orbital A.

2 B2, the probability density if the electron were confined to the atomic orbital B.

3 2AB, an extra contribution to the density.

This last contribution, the overlap density, is crucial, because it represents an 
enhancement of the probability of finding the electron in the internuclear region. The
enhancement can be traced to the constructive interference of the two atomic orbitals:
each has a positive amplitude in the internuclear region, so the total amplitude is
greater there than if the electron were confined to a single atomic orbital.

We shall frequently make use of the result that electrons accumulate in regions where
atomic orbitals overlap and interfere constructively. The conventional explanation is
based on the notion that accumulation of electron density between the nuclei puts the
electron in a position where it interacts strongly with both nuclei. Hence, the energy
of the molecule is lower than that of the separate atoms, where each electron can 
interact strongly with only one nucleus. This conventional explanation, however, has
been called into question, because shifting an electron away from a nucleus into the
internuclear region raises its potential energy. The modern (and still controversial)
explanation does not emerge from the simple LCAO treatment given here. It seems
that, at the same time as the electron shifts into the internuclear region, the atomic 
orbitals shrink. This orbital shrinkage improves the electron–nucleus attraction more
than it is decreased by the migration to the internuclear region, so there is a net low-
ering of potential energy. The kinetic energy of the electron is also modified because
the curvature of the wavefunction is changed, but the change in kinetic energy is 
dominated by the change in potential energy. Throughout the following discussion
we ascribe the strength of chemical bonds to the accumulation of electron density in
the internuclear region. We leave open the question whether in molecules more com-
plicated than H2

+ the true source of energy lowering is that accumulation itself or some
indirect but related effect.

The σ orbital we have described is an example of a bonding orbital, an orbital
which, if occupied, helps to bind two atoms together. Specifically, we label it 1σ as it is
the σ orbital of lowest energy. An electron that occupies a σ orbital is called a σ elec-
tron, and if that is the only electron present in the molecule (as in the ground state of
H2

+), then we report the configuration of the molecule as 1σ1.

e−rB/a0

(πa3
0)1/2

e−rA/a0

(πa3
0)1/2

Comment 11.3

The law of cosines states that for a
triangle such as that shown in (2) with
sides rA, rB, and R, and angle θ facing
side rB we may write: rB

2 = rA
2 + R2 −

2rAR cos θ.

rA rB

RA B
�

2

Fig. 11.15 The electron density calculated by
forming the square of the wavefunction
used to construct Fig. 11.13. Note the
accumulation of electron density in the
internuclear region.
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11.3 THE HYDROGEN MOLECULE-ION 371

The energy E1σ of the 1σ orbital is (see Problem 11.23):

E1σ = EH1s + − (11.11)

where

S = �AB dτ = 1 + + 1–3

2

e−R/a0 (11.12a)

j = � dτ = 1 − 1 + e−2R/a0 (11.12b)

k = � dτ = 1 + e−R/a0 (11.12c)

We can interpret the preceding integrals as follows:

1 All three integrals are positive and decline towards zero at large internuclear sep-
arations (S and k on account of the exponential term, j on account of the factor 1/R).

2 The integral j is a measure of the interaction between a nucleus and electron den-
sity centred on the other nucleus.

3 The integral k is a measure of the interaction between a nucleus and the excess
probability in the internuclear region arising from overlap.

Figure 11.16 is a plot of E1σ against R relative to the energy of the separated atoms. 
The energy of the 1σ orbital decreases as the internuclear separation decreases from
large values because electron density accumulates in the internuclear region as the
constructive interference between the atomic orbitals increases (Fig. 11.17). How-
ever, at small separations there is too little space between the nuclei for significant 
accumulation of electron density there. In addition, the nucleus–nucleus repulsion
(which is proportional to 1/R) becomes large. As a result, the energy of the molecule
rises at short distances, and there is a minimum in the potential energy curve. Calcula-
tions on H2

+ give Re = 130 pm and De = 1.77 eV (171 kJ mol−1); the experimental values
are 106 pm and 2.6 eV, so this simple LCAO-MO description of the molecule, while
inaccurate, is not absurdly wrong.

(c) Antibonding orbitals

The linear combination ψ− in eqn 11.7 corresponds to a higher energy than that of ψ+.
Because it is also a σ orbital we label it 2σ. This orbital has an internuclear nodal plane
where A and B cancel exactly (Figs. 11.18 and 11.19). The probability density is

ψ2
− = N2(A2 + B2 − 2AB) (11.13)

There is a reduction in probability density between the nuclei due to the −2AB term
(Fig. 11.20); in physical terms, there is destructive interference where the two atomic
orbitals overlap. The 2σ orbital is an example of an antibonding orbital, an orbital
that, if occupied, contributes to a reduction in the cohesion between two atoms and
helps to raise the energy of the molecule relative to the separated atoms.

The energy E2σ of the 2σ antibonding orbital is given by (see Problem 11.23)

E2σ = EH1s + − (11.14)

where the integrals S, j, and k are given by eqn 11.12. The variation of E2σ with R is
shown in Fig. 11.16, where we see the destabilizing effect of an antibonding electron.
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Fig. 11.16 The calculated and experimental
molecular potential energy curves for a
hydrogen molecule-ion showing the
variation of the energy of the molecule as
the bond length is changed. The alternative
g,u notation is introduced in Section 11.3c.

Region of
constructive
interference

Fig. 11.17 A representation of the
constructive interference that occurs when
two H1s orbitals overlap and form a
bonding σ orbital.
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372 11 MOLECULAR STRUCTURE

The effect is partly due to the fact that an antibonding electron is excluded from the
internuclear region, and hence is distributed largely outside the bonding region. In 
effect, whereas a bonding electron pulls two nuclei together, an antibonding electron
pulls the nuclei apart (Fig. 11.21). Figure 11.16 also shows another feature that we
draw on later: |E− − EH1s | > |E+ − EH1s |, which indicates that the antibonding orbital is
more antibonding than the bonding orbital is bonding. This important conclusion
stems in part from the presence of the nucleus–nucleus repulsion (e2/4πε0R): this
contribution raises the energy of both molecular orbitals. Antibonding orbitals are
often labelled with an asterisk (*), so the 2σ orbital could also be denoted 2σ * (and
read ‘2 sigma star’).

For homonuclear diatomic molecules, it is helpful to describe a molecular orbital
by identifying its inversion symmetry, the behaviour of the wavefunction when it is
inverted through the centre (more formally, the centre of inversion) of the molecule.
Thus, if we consider any point on the bonding σ orbital, and then project it through
the centre of the molecule and out an equal distance on the other side, then we arrive
at an identical value of the wavefunction (Fig. 11.22). This so-called gerade symmetry
(from the German word for ‘even’) is denoted by a subscript g, as in σg. On the other
hand, the same procedure applied to the antibonding 2σ orbital results in the same
size but opposite sign of the wavefunction. This ungerade symmetry (‘odd symmetry’)
is denoted by a subscript u, as in σu. This inversion symmetry classification is not 
applicable to diatomic molecules formed by atoms from two different elements (such
as CO) because these molecules do not have a centre of inversion. When using the g,u
notation, each set of orbitals of the same inversion symmetry are labelled separately

Region of
destructive
interference

Fig. 11.18 A representation of the
destructive interference that occurs when
two H1s orbitals overlap and form an
antibonding 2σ orbital.

(b)

(a)

Fig. 11.19 (a) The amplitude of the
antibonding molecular orbital in a
hydrogen molecule-ion in a plane
containing the two nuclei and (b) a
contour representation of the amplitude.
Note the internuclear node.

Exploration Plot the 2σ orbital for
different values of the internuclear

distance. Point to the features of the 2σ
orbital that lead to antibonding.

Fig. 11.20 The electron density calculated by
forming the square of the wavefunction
used to construct Fig. 11.19. Note the
elimination of electron density from the
internuclear region.

Fig. 11.22 The parity of an orbital is even (g)
if its wavefunction is unchanged under
inversion through the centre of symmetry
of the molecule, but odd (u) if the
wavefunction changes sign. Heteronuclear
diatomic molecules do not have a centre of
inversion, so for them the g, u classification
is irrelevant.

(a)

(b)

Fig. 11.21 A partial explanation of the origin
of bonding and antibonding effects. (a) In a
bonding orbital, the nuclei are attracted to
the accumulation of electron density in the
internuclear region. (b) In an antibonding
orbital, the nuclei are attracted to an
accumulation of electron density outside
the internuclear region.
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11.4 HOMONUCLEAR DIATOMIC MOLECULES 373

so, whereas 1σ becomes 1σg, its antibonding partner, which so far we have called 2σ,
is the first orbital of a different symmetry, and is denoted 1σu. The general rule is that
each set of orbitals of the same symmetry designation is labelled separately.

11.4 Homonuclear diatomic molecules

In Chapter 10 we used the hydrogenic atomic orbitals and the building-up principle
to deduce the ground electronic configurations of many-electron atoms. We now do
the same for many-electron diatomic molecules by using the H2

+ molecular orbitals.
The general procedure is to construct molecular orbitals by combining the available
atomic orbitals. The electrons supplied by the atoms are then accommodated in the
orbitals so as to achieve the lowest overall energy subject to the constraint of the Pauli
exclusion principle, that no more than two electrons may occupy a single orbital (and
then must be paired). As in the case of atoms, if several degenerate molecular orbitals
are available, we add the electrons singly to each individual orbital before doubly 
occupying any one orbital (because that minimizes electron–electron repulsions). We
also take note of Hund’s maximum multiplicity rule (Section 10.4) that, if electrons
do occupy different degenerate orbitals, then a lower energy is obtained if they do so
with parallel spins.

(a) σ orbitals

Consider H2, the simplest many-electron diatomic molecule. Each H atom con-
tributes a 1s orbital (as in H2

+), so we can form the 1σg and 1σu orbitals from them, as
we have seen already. At the experimental internuclear separation these orbitals will
have the energies shown in Fig. 11.23, which is called a molecular orbital energy level
diagram. Note that from two atomic orbitals we can build two molecular orbitals. In
general, from N atomic orbitals we can build N molecular orbitals.

There are two electrons to accommodate, and both can enter 1σg by pairing their
spins, as required by the Pauli principle (see the following Justification). The ground-
state configuration is therefore 1σ g

2 and the atoms are joined by a bond consisting of
an electron pair in a bonding σ orbital. This approach shows that an electron pair,
which was the focus of Lewis’s account of chemical bonding, represents the maximum
number of electrons that can enter a bonding molecular orbital.

Justification 11.2 Electron pairing in MO theory

The spatial wavefunction for two electrons in a bonding molecular orbital ψ such
as the bonding orbital in eqn 11.7, is ψ(1)ψ(2). This two-electron wavefunction is
obviously symmetric under interchange of the electron labels. To satisfy the Pauli
principle, it must be multiplied by the antisymmetric spin state α(1)β(2) − β(1)α(2)
to give the overall antisymmetric state

ψ(1,2) = ψ(1)ψ(2){α(1)β(2) − β(1)α(2)}

Because α(1)β(2) − β(1)α(2) corresponds to paired electron spins, we see that two
electrons can occupy the same molecular orbital (in this case, the bonding orbital)
only if their spins are paired.

The same argument shows why He does not form diatomic molecules. Each He
atom contributes a 1s orbital, so 1σg and 1σu molecular orbitals can be constructed.
Although these orbitals differ in detail from those in H2, the general shape is the same,
and we can use the same qualitative energy level diagram in the discussion. There are
four electrons to accommodate. Two can enter the 1σg orbital, but then it is full, and the
next two must enter the 1σu orbital (Fig. 11.24). The ground electronic configuration

Comment 11.4

When treating homonuclear diatomic
molecules, we shall favour the more
modern notation that focuses attention
on the symmetry properties of the
orbital. For all other molecules, we shall
use asterisks from time to time to denote
antibonding orbitals.

Fig. 11.23 A molecular orbital energy level
diagram for orbitals constructed from the
overlap of H1s orbitals; the separation of
the levels corresponds to that found at the
equilibrium bond length. The ground
electronic configuration of H2 is obtained
by accommodating the two electrons in the
lowest available orbital (the bonding
orbital).

He1s He1s

2 (1 )u

1 (1 )g

s s

s s

Fig. 11.24 The ground electronic
configuration of the hypothetical four-
electron molecule He2 has two bonding
electrons and two antibonding electrons. 
It has a higher energy than the separated
atoms, and so is unstable.

Comment 11.5

Diatomic helium ‘molecules’ have been
prepared: they consist of pairs of atoms
held together by weak van der Waals
forces of the type described in 
Chapter 18.
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374 11 MOLECULAR STRUCTURE

of He2 is therefore 1σ g
21σu

2. We see that there is one bond and one antibond. Because
an antibond is slightly more antibonding than a bond is bonding, an He2 molecule has
a higher energy than the separated atoms, so it is unstable relative to the individual
atoms.

We shall now see how the concepts we have introduced apply to homonuclear 
diatomic molecules in general. In elementary treatments, only the orbitals of the 
valence shell are used to form molecular orbitals so, for molecules formed with atoms
from Period 2 elements, only the 2s and 2p atomic orbitals are considered.

A general principle of molecular orbital theory is that all orbitals of the appropriate
symmetry contribute to a molecular orbital. Thus, to build σ orbitals, we form linear
combinations of all atomic orbitals that have cylindrical symmetry about the inter-
nuclear axis. These orbitals include the 2s orbitals on each atom and the 2pz orbitals
on the two atoms (Fig. 11.25). The general form of the σ orbitals that may be formed
is therefore

ψ = cA2sχA2s + cB2sχB2s + cA2pz
χA2pz

+ cB2pz
χB2pz

(11.15)

From these four atomic orbitals we can form four molecular orbitals of σ symmetry
by an appropriate choice of the coefficients c.

The procedure for calculating the coefficients will be described in Section 11.6. At
this stage we adopt a simpler route, and suppose that, because the 2s and 2pz orbitals
have distinctly different energies, they may be treated separately. That is, the four σ
orbitals fall approximately into two sets, one consisting of two molecular orbitals of
the form

ψ = cA2sχA2s + cB2sχB2s (11.16a)

and another consisting of two orbitals of the form

ψ = cA2pz
χA2pz

+ cB2pz
χB2pz

(11.16b)

Because atoms A and B are identical, the energies of their 2s orbitals are the same, 
so the coefficients are equal (apart from a possible difference in sign); the same is 
true of the 2pz orbitals. Therefore, the two sets of orbitals have the form χA2s ± χB2s

and χA2pz
± χB2pz

.
The 2s orbitals on the two atoms overlap to give a bonding and an antibonding σ

orbital (1σg and 1σu, respectively) in exactly the same way as we have already seen for
1s orbitals. The two 2pz orbitals directed along the internuclear axis overlap strongly.
They may interfere either constructively or destructively, and give a bonding or anti-
bonding σ orbital, respectively (Fig. 11.26). These two σ orbitals are labelled 2σg and
2σu, respectively. In general, note how the numbering follows the order of increasing
energy.

(b) π orbitals

Now consider the 2px and 2py orbitals of each atom. These orbitals are perpendicular
to the internuclear axis and may overlap broadside-on. This overlap may be construc-
tive or destructive, and results in a bonding or an antibonding π orbital (Fig. 11.27).
The notation π is the analogue of p in atoms, for when viewed along the axis of the
molecule, a π orbital looks like a p orbital, and has one unit of orbital angular 
momentum around the internuclear axis. The two 2px orbitals overlap to give a bond-
ing and antibonding πx orbital, and the two 2py orbitals overlap to give two πy orbitals.
The πx and πy bonding orbitals are degenerate; so too are their antibonding partners.
We also see from Fig. 11.27 that a bonding π orbital has odd parity and is denoted πu

and an antibonding π orbital has even parity, denoted πg.

u g

Centre of
inversion

�

�

� �

�
� �

�

� �

2s 2s

2pz 2pz
A B

Fig. 11.25 According to molecular orbital
theory, σ orbitals are built from all orbitals
that have the appropriate symmetry. In
homonuclear diatomic molecules of 
Period 2, that means that two 2s and two 2pz

orbitals should be used. From these four
orbitals, four molecular orbitals can be built.

3 (2 )g

4 (2 )u$ $

$ $

Fig. 11.26 A representation of the
composition of bonding and antibonding σ
orbitals built from the overlap of p orbitals.
These illustrations are schematic.

Fig. 11.27 A schematic representation of the
structure of π bonding and antibonding
molecular orbitals. The figure also shows that
the bonding π orbital has odd parity, whereas
the antiboding π orbital has even parity.

Comment 11.6

Note that we number only the molecular
orbitals formed from atomic orbitals 
in the valence shell. In an alternative
system of notation, 1σg and 1σu are
used to designate the molecular orbitals
formed from the core 1s orbitals of the
atoms; the orbitals we are considering
would then be labelled starting from 2.
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11.4 HOMONUCLEAR DIATOMIC MOLECULES 375

(c) The overlap integral

The extent to which two atomic orbitals on different atoms overlap is measured by the
overlap integral, S:

S = �χA*χB dτ [11.17]

If the atomic orbital χA on A is small wherever the orbital χB on B is large, or vice versa,
then the product of their amplitudes is everywhere small and the integral—the sum of
these products—is small (Fig. 11.28). If χA and χB are simultaneously large in some 
region of space, then S may be large. If the two normalized atomic orbitals are iden-
tical (for instance, 1s orbitals on the same nucleus), then S = 1. In some cases, simple
formulas can be given for overlap integrals and the variation of S with bond length
plotted (Fig. 11.29). It follows that S = 0.59 for two H1s orbitals at the equilibrium
bond length in H2

+, which is an unusually large value. Typical values for orbitals with
n = 2 are in the range 0.2 to 0.3.

Now consider the arrangement in which an s orbital is superimposed on a px orbital
of a different atom (Fig. 11.30). The integral over the region where the product of 
orbitals is positive exactly cancels the integral over the region where the product of 
orbitals is negative, so overall S = 0 exactly. Therefore, there is no net overlap between
the s and p orbitals in this arrangement.

(d) The electronic structures of homonuclear diatomic molecules

To construct the molecular orbital energy level diagram for Period 2 homonuclear 
diatomic molecules, we form eight molecular orbitals from the eight valence shell 
orbitals (four from each atom). In some cases, π orbitals are less strongly bonding
than σ orbitals because their maximum overlap occurs off-axis. This relative weak-
ness suggests that the molecular orbital energy level diagram ought to be as shown in
Fig. 11.31. However, we must remember that we have assumed that 2s and 2pz orbitals

(a)

(b)

Fig. 11.28 (a) When two orbitals are on atoms
that are far apart, the wavefunctions are small
where they overlap, so S is small. (b) When the
atoms are closer, both orbitals have significant
amplitudes where they overlap, and S may
approach 1. Note that S will decrease again as
the two atoms approach more closely than
shown here, because the region of negative
amplitude of the p orbital starts to overlap the
positive overlap of the s orbital. When the
centres of the atoms coincide, S = 0.

0
0

2 4 6

0.2

0.4

0.6

0.8

1

S

R a/ 0

Fig. 11.29 The overlap integral, S, between
two H1s orbitals as a function of their
separation R.

�

�

Fig. 11.30 A p orbital in the orientation
shown here has zero net overlap (S = 0)
with the s orbital at all internuclear
separations.

2p 2p

2s 2s

1 g

1 u

2 g

2 u

1 u

1 g

Atom Molecule Atom
$

$

$

$

�

�

Fig. 11.31 The molecular orbital energy level
diagram for homonuclear diatomic
molecules. The lines in the middle are an
indication of the energies of the molecular
orbitals that can be formed by overlap of
atomic orbitals. As remarked in the text,
this diagram should be used for O2 (the
configuration shown) and F2.
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Fig. 11.32 The variation of the orbital
energies of Period 2 homonuclear
diatomics.
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Fig. 11.33 An alternative molecular orbital
energy level diagram for homonuclear
diatomic molecules. As remarked in the
text, this diagram should be used for
diatomics up to and including N2 (the
configuration shown).

contribute to different sets of molecular orbitals whereas in fact all four atomic 
orbitals contribute jointly to the four σ orbitals. Hence, there is no guarantee that this
order of energies should prevail, and it is found experimentally (by spectroscopy) and
by detailed calculation that the order varies along Period 2 (Fig. 11.32). The order
shown in Fig. 11.33 is appropriate as far as N2, and Fig. 11.31 applies for O2 and F2.
The relative order is controlled by the separation of the 2s and 2p orbitals in the atoms,
which increases across the group. The consequent switch in order occurs at about N2.

With the orbitals established, we can deduce the ground configurations of the
molecules by adding the appropriate number of electrons to the orbitals and follow-
ing the building-up rules. Anionic species (such as the peroxide ion, O2

2−) need more
electrons than the parent neutral molecules; cationic species (such as O2

+) need fewer.
Consider N2, which has 10 valence electrons. Two electrons pair, occupy, and fill the

1σg orbital; the next two occupy and fill the 1σu orbital. Six electrons remain. There
are two 1πu orbitals, so four electrons can be accommodated in them. The last two
enter the 2σg orbital. Therefore, the ground-state configuration of N2 is 1σg

21σu
21πu

42σg
2.

A measure of the net bonding in a diatomic molecule is its bond order, b:

b = 1–2 (n − n*) [11.18]

where n is the number of electrons in bonding orbitals and n* is the number of elec-
trons in antibonding orbitals. Thus each electron pair in a bonding orbital increases
the bond order by 1 and each pair in an antibonding orbital decreases b by 1. For H2,
b = 1, corresponding to a single bond, H-H, between the two atoms. In He2, b = 0,
and there is no bond. In N2, b = 1–2 (8 − 2) = 3. This bond order accords with the Lewis
structure of the molecule (:N.N:).

The ground-state electron configuration of O2, with 12 valence electrons, is 
based on Fig. 11.31, and is 1σ g

21σu
22σ g

21πu
41π g

2. Its bond order is 2. According to the
building-up principle, however, the two 1πg electrons occupy different orbitals: one
will enter 1πu,x and the other will enter 1πu,y. Because the electrons are in different 
orbitals, they will have parallel spins. Therefore, we can predict that an O2 molecule
will have a net spin angular momentum S = 1 and, in the language introduced in
Section 10.7, be in a triplet state. Because electron spin is the source of a magnetic 
moment, we can go on to predict that oxygen should be paramagnetic. This predic-
tion, which VB theory does not make, is confirmed by experiment.
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11.4 HOMONUCLEAR DIATOMIC MOLECULES 377

Comment 11.7

A paramagnetic substance tends to
move into a magnetic field; a
diamagnetic substance tends to move
out of one. Paramagnetism, the rarer
property, arises when the molecules
have unpaired electron spins. Both
properties are discussed in more detail
in Chapter 20.

Synoptic table 11.2* Bond lengths

Bond Order Re /pm

HH 1 74.14

NN 3 109.76

HCl 1 127.45

CH 1 114

CC 1 154

CC 2 134

CC 3 120

* More values will be found in the Data section.
Numbers in italics are mean values for
polyatomic molecules.

Synoptic table 11.3* Bond
dissociation energies

Bond Order D0/(kJ mol−1)

HH 1 432.1

NN 3 941.7

HCl 1 427.7

CH 1 435

CC 1 368

CC 2 720

CC 3 962

* More values will be found in the Data section.
Numbers in italics are mean values for
polyatomic molecules.

Comment 11.8

Bond dissociation energies are
commonly used in thermodynamic
cycles, where bond enthalpies, ∆bondH 7,
should be used instead. It follows from
the same kind of argument used in
Justification 10.7 concerning ionization
enthalpies, that

X2(g) → 2 X(g) ∆bondH 7(T) = De + 3–2RT

To derive this relation, we have
supposed that the molar constant-
pressure heat capacity of X2 is 7–2 R
(Molecular interpretation 2.2) for there
is a contribution from two rotational
modes as well as three translational
modes.

An F2 molecule has two more electrons than an O2 molecule. Its configuration is
therefore 1σ g

21σu
22σ g

21πu
41π g

4 and b = 1. We conclude that F2 is a singly-bonded
molecule, in agreement with its Lewis structure. The hypothetical molecule dineon,
Ne2, has two further electrons: its configuration is 1σ g

21σu
22σ g

21πu
41π g

22σu
2 and b = 0.

The zero bond order is consistent with the monatomic nature of Ne.
The bond order is a useful parameter for discussing the characteristics of bonds, 

because it correlates with bond length and bond strength. For bonds between atoms
of a given pair of elements:

1 The greater the bond order, the shorter the bond.

2 The greater the bond order, the greater the bond strength.

Table 11.2 lists some typical bond lengths in diatomic and polyatomic molecules. 
The strength of a bond is measured by its bond dissociation energy, De, the energy 
required to separate the atoms to infinity. Table 11.3 lists some experimental values 
of dissociation energies.

Example 11.2 Judging the relative bond strengths of molecules and ions

Judge whether N2
+ is likely to have a larger or smaller dissociation energy than N2.

Method Because the molecule with the larger bond order is likely to have the larger
dissociation energy, compare their electronic configurations and assess their bond
orders.

Answer From Fig. 11.33, the electron configurations and bond orders are

N2 1σ g
21σu

21πu
42σ g

2 b = 3

N2
+ 1σ g

21σu
21πu

42σ g
1 b = 2 1–2

Because the cation has the smaller bond order, we expect it to have the smaller dis-
sociation energy. The experimental dissociation energies are 945 kJ mol−1 for N2

and 842 kJ mol−1 for N2
+.

Self-test 11.4 Which can be expected to have the higher dissociation energy, F2

or F2
+? [F2

+]
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Fig. 11.34 An incoming photon carries an
energy hν ; an energy Ii is needed to remove
an electron from an orbital i, and the
difference appears as the kinetic energy of
the electron.

Detector

Electrostatic
analyser

�

�

Sample

Lamp

Fig. 11.35 A photoelectron spectrometer
consists of a source of ionizing radiation
(such as a helium discharge lamp for UPS
and an X-ray source for XPS), an
electrostatic analyser, and an electron
detector. The deflection of the electron
path caused by the analyser depends on
their speed.

(e) Photoelectron spectroscopy

So far we have treated molecular orbitals as purely theoretical constructs, but is there
experimental evidence for their existence? Photoelectron spectroscopy (PES) meas-
ures the ionization energies of molecules when electrons are ejected from different 
orbitals by absorption of a photon of the proper energy, and uses the information to
infer the energies of molecular orbitals. The technique is also used to study solids, and
in Chapter 25 we shall see the important information that it gives about species at or
on surfaces.

Because energy is conserved when a photon ionizes a sample, the energy of the 
incident photon hν must be equal to the sum of the ionization energy, I, of the sample
and the kinetic energy of the photoelectron, the ejected electron (Fig. 11.34):

hν = 1–2 mev
2 + I (11.19)

This equation (which is like the one used for the photoelectric effect, Section 8.2a) can
be refined in two ways. First, photoelectrons may originate from one of a number of
different orbitals, and each one has a different ionization energy. Hence, a series of
different kinetic energies of the photoelectrons will be obtained, each one satisfying

hν = 1–2 mev
2 + Ii (11.20)

where Ii is the ionization energy for ejection of an electron from an orbital i.
Therefore, by measuring the kinetic energies of the photoelectrons, and knowing ν,
these ionization energies can be determined. Photoelectron spectra are interpreted in
terms of an approximation called Koopmans’ theorem, which states that the ioniza-
tion energy Ii is equal to the orbital energy of the ejected electron (formally: Ii = −εi).
That is, we can identify the ionization energy with the energy of the orbital from which
it is ejected. Similarly, the energy of unfilled (‘virtual orbitals’) is related to the elec-
tron affinity. The theorem is only an approximation because it ignores the fact that the
remaining electrons adjust their distributions when ionization occurs.

The ionization energies of molecules are several electronvolts even for valence elec-
trons, so it is essential to work in at least the ultraviolet region of the spectrum and
with wavelengths of less than about 200 nm. Much work has been done with radiation
generated by a discharge through helium: the He(I) line (1s12p1 → 1s2) lies at 58.43
nm, corresponding to a photon energy of 21.22 eV. Its use gives rise to the technique
of ultraviolet photoelectron spectroscopy (UPS). When core electrons are being
studied, photons of even higher energy are needed to expel them: X–rays are used, and
the technique is denoted XPS.

The kinetic energies of the photoelectrons are measured using an electrostatic
deflector that produces different deflections in the paths of the photoelectrons as they
pass between charged plates (Fig. 11.35). As the field strength is increased, electrons 
of different speeds, and therefore kinetic energies, reach the detector. The electron flux
can be recorded and plotted against kinetic energy to obtain the photoelectron spectrum.

Illustration 11.1 Interpreting a photoelectron spectrum

Photoelectrons ejected from N2 with He(I) radiation had kinetic energies of 
5.63 eV (1 eV = 8065.5 cm−1). Helium(I) radiation of wavelength 58.43 nm has
wavenumber 1.711 × 105 cm−1 and therefore corresponds to an energy of 21.22 eV.
Then, from eqn 11.20, 21.22 eV = 5.63 eV + Ii , so Ii = 15.59 eV. This ionization 
energy is the energy needed to remove an electron from the occupied molecular 
orbital with the highest energy of the N2 molecule, the 2σg bonding orbital (see 
Fig. 11.33).
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Fig. 11.36 The atomic orbital energy levels of
H and F atoms and the molecular orbitals
they form.

Synoptic table 11.4* Pauling
electronegativities

Element χP

H 2.2

C 2.6

N 3.0

O 3.4

F 4.0

Cl 3.2

Cs 0.79

* More values will be found in the Data section.

Self-test 11.5 Under the same circumstances, photoelectrons are also detected at
4.53 eV. To what ionization energy does that correspond? Suggest an origin.

[16.7 eV, 1πu]

11.5 Heteronuclear diatomic molecules

The electron distribution in the covalent bond between the atoms in a heteronuclear
diatomic molecule is not shared evenly because it is energetically favourable for the
electron pair to be found closer to one atom than the other. This imbalance results in
a polar bond, a covalent bond in which the electron pair is shared unequally by the
two atoms. The bond in HF, for instance, is polar, with the electron pair closer to the
F atom. The accumulation of the electron pair near the F atom results in that atom
having a net negative charge, which is called a partial negative charge and denoted 
δ−. There is a matching partial positive charge, δ+, on the H atom.

(a) Polar bonds

A polar bond consists of two electrons in an orbital of the form

ψ = cAA + cBB (11.21)

with unequal coefficients. The proportion of the atomic orbital A in the bond is |cA |2
and that of B is |cB |2. A nonpolar bond has |cA |2 = |cB |2 and a pure ionic bond has one
coefficient zero (so the species A+B− would have cA = 0 and cB = 1). The atomic orbital
with the lower energy makes the larger contribution to the bonding molecular orbital.
The opposite is true of the antibonding orbital, for which the dominant component
comes from the atomic orbital with higher energy.

These points can be illustrated by considering HF, and judging the energies of the
atomic orbitals from the ionization energies of the atoms. The general form of the
molecular orbitals is

ψ = cHχH + cFχF (11.22)

where χH is an H1s orbital and χF is an F2p orbital. The H1s orbital lies 13.6 eV below
the zero of energy (the separated proton and electron) and the F2p orbital lies at 
18.6 eV (Fig. 11.36). Hence, the bonding σ orbital in HF is mainly F2p and the anti-
bonding σ orbital is mainly H1s orbital in character. The two electrons in the bonding 
orbital are most likely to be found in the F2p orbital, so there is a partial negative
charge on the F atom and a partial positive charge on the H atom.

(b) Electronegativity

The charge distribution in bonds is commonly discussed in terms of the electronega-
tivity, χ, of the elements involved (there should be little danger of confusing this use
of χ with its use to denote an atomic orbital, which is another common convention).
The electronegativity is a parameter introduced by Linus Pauling as a measure of the
power of an atom to attract electrons to itself when it is part of a compound. Pauling
used valence-bond arguments to suggest that an appropriate numerical scale of elec-
tronegativities could be defined in terms of bond dissociation energies, D, in elec-
tronvolts and proposed that the difference in electronegativities could be expressed as

|χA − χB | = 0.102{D(A-B) − 1–2 [D(A-A) + D(B-B)]}1/2 [11.23]

Electronegativities based on this definition are called Pauling electronegativities.
A list of Pauling electronegativities is given in Table 11.4. The most electronegative 
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elements are those close to fluorine; the least are those close to caesium. It is found
that the greater the difference in electronegativities, the greater the polar character of
the bond. The difference for HF, for instance, is 1.78; a C-H bond, which is com-
monly regarded as almost nonpolar, has an electronegativity difference of 0.51.

The spectroscopist Robert Mulliken proposed an alternative definition of elec-
tronegativity. He argued that an element is likely to be highly electronegative if it has
a high ionization energy (so it will not release electrons readily) and a high electron
affinity (so it is energetically favorable to acquire electrons). The Mulliken elec-
tronegativity scale is therefore based on the definition

χM = 1–2 (I + Eea) [11.24]

where I is the ionization energy of the element and Eea is its electron affinity (both 
in electronvolts, Section 10.4e). The Mulliken and Pauling scales are approxim-
ately in line with each other. A reasonably reliable conversion between the two is 
χP = 1.35χM

1/2 − 1.37.

(c) The variation principle

A more systematic way of discussing bond polarity and finding the coefficients in the
linear combinations used to build molecular orbitals is provided by the variation
principle:

If an arbitrary wavefunction is used to calculate the energy, the value calculated is
never less than the true energy.

This principle is the basis of all modern molecular structure calculations (Section 11.7).
The arbitrary wavefunction is called the trial wavefunction. The principle implies
that, if we vary the coefficients in the trial wavefunction until the lowest energy is
achieved (by evaluating the expectation value of the hamiltonian for each wavefunc-
tion), then those coefficients will be the best. We might get a lower energy if we use a
more complicated wavefunction (for example, by taking a linear combination of sev-
eral atomic orbitals on each atom), but we shall have the optimum (minimum energy)
molecular orbital that can be built from the chosen basis set, the given set of atomic
orbitals.

The method can be illustrated by the trial wavefunction in eqn 11.21. We show
in the Justification below that the coefficients are given by the solutions of the two 
secular equations

(αA − E)cA + (β − ES)cB = 0 (11.25a)

(β − ES)cA + (αB − E)cB = 0 (11.25b)

The parameter α is called a Coulomb integral. It is negative and can be interpreted 
as the energy of the electron when it occupies A (for αA) or B (for αB). In a homo-
nuclear diatomic molecule, αA = αB. The parameter β is called a resonance integral
(for classical reasons). It vanishes when the orbitals do not overlap, and at equilibrium
bond lengths it is normally negative.

Justification 11.3 The variation principle applied to a heteronuclear diatomic
molecule

The trial wavefunction in eqn 11.21 is real but not normalized because at this stage
the coefficients can take arbitrary values. Therefore, we can write ψ* = ψ but do not
assume that ∫ψ2dτ = 1. The energy of the trial wavefunction is the expectation value
of the energy operator (the hamiltonian, @, Section 8.5):

Comment 11.9

The name ‘secular’ is derived from the
Latin word for age or generation. The
term comes via astronomy, where the
same equations appear in connection
with slowly accumulating modifications
of planetary orbits.

Subhankar Sardar
Highlight

Subhankar Sardar
Highlight
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E = (11.26)

We must search for values of the coefficients in the trial function that minimize the
value of E. This is a standard problem in calculus, and is solved by finding the
coefficients for which

= 0 = 0

The first step is to express the two integrals in terms of the coefficients. The denom-
inator is

�ψ2 dτ =�(cAA + cBB)2 dτ

= cA
2�A2 dτ + cB

2�B2 dτ + 2cAcB�AB dτ

= cA
2 + cB

2 + 2cAcBS

because the individual atomic orbitals are normalized and the third integral is the
overlap integral S (eqn 11.17). The numerator is

�ψ@ψ dτ =�(cAA + cBB)@(cAA + cBB) dτ

= cA
2�A@A dτ + c B

2�B@B dτ + cAcB�A@B dτ + cAcB�B@A dτ

There are some complicated integrals in this expression, but we can combine them
all into the parameters

αA =�A@A dτ αB =�B@B dτ [11.27]

β =�A@B dτ =�B@A dτ (by the hermiticity of @)

Then

�ψ@ψ dτ = cA
2αA + cB

2αB + 2cAcBβ

The complete expression for E is

E = (11.28)

Its minimum is found by differentiation with respect to the two coefficients and set-
ting the results equal to 0. After a bit of work, we obtain

= = 0

= = 0
2 × (cBαB − cBE + cAβ − cASE)

cA
2 + cB

2 + 2cAcBS

∂E

∂cB

2 × (cAαA − cAE + cBβ − cBSE)

cA
2 + cB

2 + 2cAcBS

∂E

∂cA

cA
2αA + cB

2αB + 2cAcBβ
cA

2 + cB
2 + 2cAcBS

∂E

∂cB

∂E

∂cA

�ψ*@ψdτ

�ψ*ψdτ
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Comment 11.10

We need to know that a 2 × 2
determinant expands as follows:

a b
c d

= ad − bc

For the derivatives to vanish, the numerators of the expressions above must vanish.
That is, we must find values of cA and cB that satisfy the conditions

cAαA − cAE + cBβ − cBSE = (αA − E)cA + (β − ES)cB = 0

cAβ − cASE + cBαB − cBE = (β − ES)cA + (αB − E)cB = 0

which are the secular equations (eqn 11.25).

To solve the secular equations for the coefficients we need to know the energy E
of the orbital. As for any set of simultaneous equations, the secular equations have a
solution if the secular determinant, the determinant of the coefficients, is zero; that 
is, if

αA − E β − ES
(11.29)β − ES αB − E

= 0

This determinant expands to a quadratic equation in E (see Illustration 11.2). Its two
roots give the energies of the bonding and antibonding molecular orbitals formed
from the atomic orbitals and, according to the variation principle, the lower root is
the best energy achievable with the given basis set.

Illustration 11.2 Using the variation principle (1)

To find the energies E of the bonding and antibonding orbitals of a homonuclear
diatomic molecule set with αA = αB = α in eqn 11.29 and get

α − E β − ES
β − ES α − E

= (α − E)2 − (β − ES)2 = 0

The solutions of this equation are

E± =

The values of the coefficients in the linear combination are obtained by solving the
secular equations using the two energies obtained from the secular determinant. The
lower energy (E+ in the Illustration) gives the coefficients for the bonding molecular
orbital, the upper energy (E−) the coefficients for the antibonding molecular orbital.
The secular equations give expressions for the ratio of the coefficients in each case, so
we need a further equation in order to find their individual values. This equation is
obtained by demanding that the best wavefunction should also be normalized. This
condition means that, at this final stage, we must also ensure that

�ψ2 dτ = cA
2 + cB

2 + 2cAcBS = 1 (11.30)

Illustration 11.3 Using the variation principle (2)

To find the values of the coefficients cA and cB in the linear combination that corres-
ponds to the energy E+ from Illustration 11.2, we use eqn 11.28 (with αA = αB = α)
to write

E+ = =
cA

2α + cB
2α + 2cAcBβ

cA
2 + cB

2 + 2cAcBS

α + β
1 + S

α ± β
1 ± S



11.5 HETERONUCLEAR DIATOMIC MOLECULES 383

Now we use the normalization condition, eqn 11.30, to set cA
2 + cB

2 + 2cAcBS = 1, and
so write

= (c2
A + c 2

B)α + 2cAcBβ

This expression implies that

c2
A + c2

B = 2cAcB = and |cA | = cB = cA

Proceeding in a similar way to find the coefficients in the linear combination that
corresponds to the energy E−,we write

E− = = (c2
A + c2

B)α + 2cAcBβ

which implies that

c2
A + c2

B = −2cAcB = and |cA | = cB = −cA

(d) Two simple cases

The complete solutions of the secular equations are very cumbersome, even for 
2 × 2 determinants, but there are two cases where the roots can be written down very
simply.

We saw in Illustrations 11.2 and 11.3 that, when the two atoms are the same, and we
can write αA = αB = α, the solutions are

E+ = cA = cB = cA (11.31a)

E− = cA = cB = −cA (11.31b)

In this case, the bonding orbital has the form

ψ+ = (11.32a)

and the corresponding antibonding orbital is

ψ− = (11.32b)

in agreement with the discussion of homonuclear diatomics we have already given,
but now with the normalization constant in place.

The second simple case is for a heteronuclear diatomic molecule but with S = 0
(a common approximation in elementary work). The secular determinant is then

= (αA − E)(αB − E) − β2 = 0

The solutions can be expressed in terms of the parameter ζ (zeta), with

ζ = 1–2 arctan (11.33)
2|β |

αB − αA

β
αB − E

αA − E
β

A − B

{2(1 − S)}1/2

A + B

{2(1 + S)}1/2

1

{2(1 − S)}1/2

α − β
1 − S

1

{2(1 + S)}1/2

α + β
1 + S

1

{2(1 − S)}1/2

1

1 − S

α − β
1 − S

1

{2(1 + S)}1/2

1

1 + S

α + β
1 + S
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Comment 11.11

For x << 1, we can write: sin x ≈ x, cos x ≈
1, tan x ≈ x, and arctan x = tan−1 x ≈ x.

and are

E− = αB − β tan ζ ψ− = −A sin ζ + B cos ζ (11.34a)

E+ = αA + β tan ζ ψ+ = A cos ζ + B sin ζ (11.34b)

An important feature revealed by these solutions is that as the energy difference
|αB − αA | between the interacting atomic orbitals increases, the value of ζ decreases.
We show in the following Justification that, when the energy difference is very large, in
the sense that |αB − αA | >> 2|β |, the energies of the resulting molecular orbitals differ
only slightly from those of the atomic orbitals, which implies in turn that the bonding
and antibonding effects are small. That is, the strongest bonding and antibonding effects
are obtained when the two contributing orbitals have closely similar energies. The dif-
ference in energy between core and valence orbitals is the justification for neglecting
the contribution of core orbitals to bonding. The core orbitals of one atom have a 
similar energy to the core orbitals of the other atom; but core–core interaction is largely
negligible because the overlap between them (and hence the value of β) is so small.

Justification 11.4 Bonding and antibonding effects in heteronuclear diatomic
molecules

When |αB − αA | >> 2| β | and 2|β | / |αB − αA| << 1, we can write arctan 2|β | / |αB − αA |
≈ 2|β |/|αB − αA| and, from eqn 11.33, ζ ≈ |β |/(αB − αA). It follows that tan ζ ≈
|β |/(αB − αA). Noting that β is normally a negative number, so that β / |β | = −1, we
can use eqn 11.34 to write

E− = αB + E+ = αA −

(In Problem 11.25 you are invited to derive these expressions via a different route.)
It follows that, when the energy difference between the atomic orbitals is so large
that |αB − αA | >> 2| β |, the energies of the two molecular orbitals are E− ≈ αB and
E+ ≈ αA.

Now we consider the behaviour of the wavefunctions in the limit of large |αB − αA|,
when ζ << 1. In this case, sin ζ ≈ ζ and cos ζ ≈ 1 and, from eqn 11.34, we write ψ− ≈ B
and ψ+ ≈ A. That is, the molecular orbitals are respectively almost pure B and almost
pure A.

Example 11.3 Calculating the molecular orbitals of HF

Calculate the wavefunctions and energies of the σ orbitals in the HF molecule, 
taking β = −1.0 eV and the following ionization energies: H1s: 13.6 eV, F2s: 40.2 eV,
F2p: 17.4 eV.

Method Because the F2p and H1s orbitals are much closer in energy than the F2s
and H1s orbitals, to a first approximation neglect the contribution of the F2s
orbital. To use eqn 11.34, we need to know the values of the Coulomb integrals 
αH and αF. Because these integrals represent the energies of the H1s and F2p elec-
trons, respectively, they are approximately equal to (the negative of) the ionization
energies of the atoms. Calculate ζ from eqn 11.33 (with A identified as F and B as
H), and then write the wavefunctions by using eqn 11.34.

Answer Setting αH = −13.6 eV and αF = −17.4 eV gives tan 2ζ = 0.58; so ζ = 13.9°.
Then

β2

αB − αA

β2

αB − αA
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E− = −13.4 eV ψ− = 0.97χH − 0.24χF

E+ = −17.6 eV ψ+ = 0.24χH + 0.97χF

Notice how the lower energy orbital (the one with energy −17.6 eV) has a compo-
sition that is more F2p orbital than H1s, and that the opposite is true of the higher
energy, antibonding orbital.

Self-test 11.6 The ionization energy of Cl is 13.1 eV; find the form and energies of
the σ orbitals in the HCl molecule using β = −1.0 eV.

[E− = −12.8 eV, ψ− = −0.62χH + 0.79χCl; E+ = −13.9 eV, ψ+ = 0.79χH + 0.62χCl]

IMPACT ON BIOCHEMISTRY

I11.1 The biochemical reactivity of O2, N2, and NO

We can now see how some of these concepts are applied to diatomic molecules that
play a vital biochemical role. At sea level, air contains approximately 23.1 per cent O2

and 75.5 per cent N2 by mass. Molecular orbital theory predicts—correctly—that O2

has unpaired electron spins and, consequently, is a reactive component of the Earth’s
atmosphere; its most important biological role is as an oxidizing agent. By contrast
N2, the major component of the air we breathe, is so stable (on account of the triple
bond connecting the atoms) and unreactive that nitrogen fixation, the reduction of 
atmospheric N2 to NH3, is among the most thermodynamically demanding of 
biochemical reactions, in the sense that it requires a great deal of energy derived from
metabolism. So taxing is the process that only certain bacteria and archaea are cap-
able of carrying it out, making nitrogen available first to plants and other micro-
organisms in the form of ammonia. Only after incorporation into amino acids by
plants does nitrogen adopt a chemical form that, when consumed, can be used by 
animals in the synthesis of proteins and other nitrogen-containing molecules.

The reactivity of O2, while important for biological energy conversion, also poses
serious physiological problems. During the course of metabolism, some electrons 
escape from complexes I, II, and III of the respiratory chain and reduce O2 to super-
oxide ion, O2

−. The ground-state electronic configuration of O2
− is 1σ g

21σu
22σ g

21πu
41π g

3,
so the ion is a radical with a bond order b = 3–2 . We predict that the superoxide ion is a
reactive species that must be scavenged to prevent damage to cellular components.
The enzyme superoxide dismutase protects cells by catalysing the disproportionation
(or dismutation) of O2

− into O2 and H2O2:

2 O2
− + 2 H+ → H2O2 + O2

However, H2O2 (hydrogen peroxide), formed by the reaction above and by leakage of
electrons out of the respiratory chain, is a powerful oxidizing agent and also harmful
to cells. It is metabolized further by catalases and peroxidases. A catalase catalyses the
reaction

2 H2O2 → 2 H2O + O2

and a peroxidase reduces hydrogen peroxide to water by oxidizing an organic molecule.
For example, the enzyme glutathione peroxidase catalyses the reaction

2 glutathionered + H2O2 → glutathioneox + 2 H2O

There is growing evidence for the involvement of the damage caused by reactive 
oxygen species (ROS), such as O2

−, H2O2, and ·OH (the hydroxyl radical), in the 
mechanism of ageing and in the development of cardiovascular disease, cancer,
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stroke, inflammatory disease, and other conditions. For this reason, much effort has
been expended on studies of the biochemistry of antioxidants, substances that can 
either deactivate ROS directly (as glutathione does) or halt the progress of cellular
damage through reactions with radicals formed by processes initiated by ROS.
Important examples of antioxidants are vitamin C (ascorbic acid), vitamin E (α-
tocopherol), and uric acid.

Nitric oxide (nitrogen monoxide, NO) is a small molecule that diffuses quickly 
between cells, carrying chemical messages that help initiate a variety of processes, such
as regulation of blood pressure, inhibition of platelet aggregation, and defence against
inflammation and attacks to the immune system. The molecule is synthesized from
the amino acid arginine in a series of reactions catalysed by nitric oxide synthase and
requiring O2 and NADPH.

Figure 11.37 shows the bonding scheme in NO and illustrates a number of points
we have made about heteronuclear diatomic molecules. The ground configuration is
1σ22σ23σ21π42π1. The 3σ and 1π orbitals are predominantly of O character as that is
the more electronegative element. The highest-energy occupied orbital is 2π, contains
one electron, and has more N character than O character. It follows that NO is a rad-
ical with an unpaired electron that can be regarded as localized more on the N atom
than on the O atom. The lowest-energy occupied orbital  is 4σ, which is also localized
predominantly on N.

Because NO is a radical, we expect it to be reactive. Its half-life is estimated at 
approximately 1–5 s, so it needs to be synthesized often in the cell. As we saw above,
there is a biochemical price to be paid for the reactivity of biological radicals. Like
O2, NO participates in some reactions that are not beneficial to the cell. Indeed, the
radicals O2

− and NO combine to form the peroxynitrite ion:

NO · + O2
−· → ONOO−

where we have shown the unpaired electrons explicitly. The peroxynitrite ion is a react-
ive oxygen species that damages proteins, DNA, and lipids, possibly leading to heart
disease, amyotrophic lateral sclerosis (Lou Gehrig’s disease), Alzheimer’s disease, and
multiple sclerosis. Note that the structure of the ion is consistent with the bonding
scheme in Fig. 11.37: because the unpaired electron in NO is slightly more localized
on the N atom, we expect that atom to form a bond with an O atom from the O2

− ion.

Molecular orbitals for polyatomic systems

The molecular orbitals of polyatomic molecules are built in the same way as in 
diatomic molecules, the only difference being that we use more atomic orbitals to
construct them. As for diatomic molecules, polyatomic molecular orbitals spread
over the entire molecule. A molecular orbital has the general form

ψ = ∑
i

ciχi (11.35)

where χi is an atomic orbital and the sum extends over all the valence orbitals of all the
atoms in the molecule. To find the coefficients, we set up the secular equations and the
secular determinant, just as for diatomic molecules, solve the latter for the energies,
and then use these energies in the secular equations to find the coefficients of the
atomic orbitals for each molecular orbital.

The principal difference between diatomic and polyatomic molecules lies in the
greater range of shapes that are possible: a diatomic molecule is necessarily linear, but
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Fig. 11.37 The molecular orbital energy level
diagram for NO.
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a triatomic molecule, for instance, may be either linear or angular with a character-
istic bond angle. The shape of a polyatomic molecule—the specification of its bond
lengths and its bond angles—can be predicted by calculating the total energy of the
molecule for a variety of nuclear positions, and then identifying the conformation
that corresponds to the lowest energy.

11.6 The Hückel approximation

Molecular orbital theory takes large molecules and extended aggregates of atoms,
such as solid materials, in its stride. First we shall consider conjugated molecules, in
which there is an alternation of single and double bonds along a chain of carbon
atoms. Although the classification of an orbital as σ or π is strictly valid only in linear
molecules, as will be familiar from introductory chemistry courses, it is also used to
denote the local symmetry with respect to a given A-B bond axis.

The π molecular orbital energy level diagrams of conjugated molecules can be con-
structed using a set of approximations suggested by Erich Hückel in 1931. In his 
approach, the π orbitals are treated separately from the σ orbitals, and the latter form
a rigid framework that determines the general shape of the molecule. All the C atoms
are treated identically, so all the Coulomb integrals α for the atomic orbitals that con-
tribute to the π orbitals are set equal. For example, in ethene, we take the σ bonds as
fixed, and concentrate on finding the energies of the single π bond and its companion
antibond.

(a) Ethene and frontier orbitals

We express the π orbitals as LCAOs of the C2p orbitals that lie perpendicular to the
molecular plane. In ethene, for instance, we would write

ψ = cAA + cBB (11.36)

where the A is a C2p orbital on atom A, and so on. Next, the optimum coefficients and
energies are found by the variation principle as explained in Section 11.5. That is, 
we have to solve the secular determinant, which in the case of ethene is eqn 11.29 with
αA = αB = α:

α − E β − ES
(11.37)β − ES α − E

= 0

The roots of this determinant can be found very easily (they are the same as those 
in Illustration 11.2). In a modern computation all the resonance integrals and overlap
integrals would be included, but an indication of the molecular orbital energy level 
diagram can be obtained very readily if we make the following additional Hückel
approximations:

1 All overlap integrals are set equal to zero.

2 All resonance integrals between non-neighbours are set equal to zero.

3 All remaining resonance integrals are set equal (to β).

These approximations are obviously very severe, but they let us calculate at least a gen-
eral picture of the molecular orbital energy levels with very little work. The assump-
tions result in the following structure of the secular determinant:

1 All diagonal elements: α − E.

2 Off-diagonal elements between neighbouring atoms: β.

3 All other elements: 0.
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These approximations lead to

= (α − E)2 − β2 = 0 (11.38)

The roots of the equation are

E± = α ± β (11.39)

The + sign corresponds to the bonding combination (β is negative) and the − sign
corresponds to the antibonding combination (Fig. 11.38). We see the effect of 
neglecting overlap by comparing this result with eqn 11.31.

The building-up principle leads to the configuration 1π2, because each carbon atom
supplies one electron to the π system. The highest occupied molecular orbital in
ethene, its HOMO, is the 1π orbital; the lowest unfilled molecular orbital, its LUMO,
is the 2π orbital (or, as it is sometimes denoted, the 2π* orbital). These two orbitals
jointly form the frontier orbitals of the molecule. The frontier orbitals are important
because they are largely responsible for many of the chemical and spectroscopic prop-
erties of the molecule. For example, we can estimate that 2 |β | is the π* ← π excitation
energy of ethene, the energy required to excite an electron from the 1π to the 2π orbital.
The constant β is often left as an adjustable parameter; an approximate value for π bonds
formed from overlap of two C2p atomic orbitals is about −2.4 eV (−230 kJ mol−1).

(b) The matrix formulation of the Hückel method

In preparation for making Hückel theory more sophisticated and readily applicable to
bigger molecules, we need to reformulate it in terms of matrices and vectors (see
Appendix 2). We have seen that the secular equations that we have to solve for a two-
atom system have the form

(HAA − EiSAA)ci,A + (HAB − EiSAB)ci,B = 0 (11.40a)

(HBA − EiSBA)ci,A + (HBB − EiSBB)ci,B = 0 (11.40b)

where the eigenvalue Ei corresponds to a wavefunction of the form ψi = ci,AA + ci,BB.
(These expressions generalize eqn 11.25). There are two atomic orbitals, two eigen-
values, and two wavefunctions, so there are two pairs of secular equations, with the
first corresponding to E1 and ψ1:

(HAA − E1SAA)c1,A + (HAB − E1SAB)c1,B = 0 (11.41a)

(HBA − E1SBA)c1,A + (HBB − E1SBB)c1,B = 0 (11.41b)

and another corresponding to E2 and ψ2:

(HAA − E2SAA)c2,A + (HAB − E2SAB)c2,B = 0 (11.41c)

(HBA − E2SBA)c2,A + (HBB − E2SBB)c2,B = 0 (11.41d)

If we introduce the following matrices and column vectors

H = S = ci = (11.42)

then each pair of equations may be written more succinctly as

(H − EiS)ci = 0 or Hci = SciEi (11.43)

where H is the hamiltonian matrix and S is the overlap matrix. To proceed with the
calculation of the eigenvalues and coefficients, we introduce the matrices

C = (c1 c2) = E = [11.44]
D
F

0

E2

E1

0

A
C

D
F

c2,A

c2,B

c1,A

c1,B

A
C

D
F

ci,A

ci,B

A
C

D
F

SAB

SBB

SAA

SBA

A
C

D
F

HAB

HBB

HAA

HBA

A
C

β
α − E

α − E
β

Fig. 11.38 The Hückel molecular orbital
energy levels of ethene. Two electrons
occupy the lower π orbital.
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for then the entire set of equations we have to solve can be expressed as

HC = SCE (11.45)

Self-test 11.7 Show by carrying out the necessary matrix operations that eqn 11.45
is a representation of the system of equations consisting of eqns 11.41(a)–(d).

In the Hückel approximation, HAA = HBB = α, HAB = HBA = β, and we neglect 
overlap, setting S = 1, the unit matrix (with 1 on the diagonal and 0 elsewhere). Then

HC = CE

At this point, we multiply from the left by the inverse matrix C −1, and find

C −1HC = E (11.46)

where we have used C −1C = 1. In other words, to find the eigenvalues Ei, we have to
find a transformation of H that makes it diagonal. This procedure is called matrix
diagonalization. The diagonal elements then correspond to the eigenvalues Ei and the
columns of the matrix C that brings about this diagonalization are the coefficients of
the members of the basis set, the set of atomic orbitals used in the calculation, and
hence give us the composition of the molecular orbitals. If there are N orbitals in the
basis set (there are only two in our example), then there are N eigenvalues Ei and N
corresponding column vectors ci. As a result, we have to solve N equations of the form
Hci = SciEi by diagonalization of the N × N matrix H, as directed by eqn 11.46.

Example 11.4 Finding the molecular orbitals by matrix diagonalization

Set up and solve the matrix equations within the Hückel approximation for the π-
orbitals of butadiene (3).

Method The matrices will be four-dimensional for this four-atom system. Ignore
overlap, and construct the matrix H by using the Hückel values α and β. Find the
matrix C that diagonalizes H: for this step, use mathematical software. Full details
are given in Appendix 2.

Solution

Mathematical software then diagonalizes this matrix to

and the matrix that achieves the diagonalization is

C

.   .   . .

.   . .   .

. . . .

. .   .   .

=

−
−

− − −
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 372 0 602 0 602 0 372
0 602 0 372 0 372 0 602
0 602 0 372 0 372 0 602
0 372 0 602 0 602 0 372

E

  .
  .

  .
  .

=

+
+

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

α β
α β

α β
α β

1 62 0 0 0
0 0 62 0 0
0 0 0 62 0
0 0 0 1 62

H     =

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
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⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

H H H H
H H H H
H H H H
H H H H
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21 22 23 24

31 32 33 34
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0 0
0

0
0 0
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β α β

β α β
β α



390 11 MOLECULAR STRUCTURE
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Fig. 11.39 The Hückel molecular orbital
energy levels of butadiene and the top view
of the corresponding π orbitals. The four p
electrons (one supplied by each C) occupy
the two lower π orbitals. Note that the
orbitals are delocalized.

We can conclude that the energies and molecular orbitals are

E1 = α + 1.62β ψ1 = 0.372χA + 0.602χB + 0.602χC + 0.372χD

E2 = α + 0.62β ψ2 = 0.602χA + 0.372χB − 0.372χC − 0.602χD

E3 = α − 0.62β ψ3 = 0.602χA − 0.372χB − 0.372χC + 0.602χD

E4 = α − 1.62β ψ4 = −0.372χA + 0.602χB − 0.602χC − 0.372χD

where the C2p atomic orbitals are denoted by χA, . . . , χD. Note that the orbitals are
mutually orthogonal and, with overlap neglected, normalized.

Self-test 11.8 Repeat the exercise for the allyl radical, · CH2-CH=CH2.
[E = α + 21/2β, α, α − 21/2β; ψ1 = 1–2 χA + ( 1–2 )1/2χB + 1–2 χC,

ψ2 = ( 1–2 )1/2χA − ( 1–2 )1/2χC, ψ3 = 1–2 χA − ( 1–2 )1/2χB + 1–2 χC

(c) Butadiene and π-electron binding energy

As we saw in the preceding example, the energies of the four LCAO-MOs for butadi-
ene are

E = α ± 1.62β, α ± 0.62β (11.47)

These orbitals and their energies are drawn in Fig. 11.39. Note that the greater the
number of internuclear nodes, the higher the energy of the orbital. There are four
electrons to accommodate, so the ground-state configuration is 1π22π2. The frontier
orbitals of butadiene are the 2π orbital (the HOMO, which is largely bonding) and the
3π orbital (the LUMO, which is largely antibonding). ‘Largely’ bonding means that an
orbital has both bonding and antibonding interactions between various neighbours,
but the bonding effects dominate. ‘Largely antibonding’ indicates that the antibond-
ing effects dominate.

An important point emerges when we calculate the total π-electron binding 
energy, Eπ, the sum of the energies of each π electron, and compare it with what we
find in ethene. In ethene the total energy is

Eπ = 2(α + β) = 2α + 2β

In butadiene it is

Eπ = 2(α + 1.62β) + 2(α + 0.62β) = 4α + 4.48β

Therefore, the energy of the butadiene molecule lies lower by 0.48β (about 110 kJ
mol−1) than the sum of two individual π bonds. This extra stabilization of a con-
jugated system is called the delocalization energy. A closely related quantity is the 
π-bond formation energy, the energy released when a π bond is formed. Because the
contribution of α is the same in the molecule as in the atoms, we can find the π-bond
formation energy from the π-electron binding energy by writing

Ebf = Eπ − Nα (11.48)

where N is the number of carbon atoms in the molecule. The π-bond formation en-
ergy in butadiene, for instance, is 4.48β.

Example 11.5 Estimating the delocalization energy

Use the Hückel approximation to find the energies of the π orbitals of cyclo-
butadiene, and estimate the delocalization energy.
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C
H

Fig. 11.40 The σ framework of benzene is
formed by the overlap of Csp2 hybrids,
which fit without strain into a hexagonal
arrangement.

b2g

e2u

e1g

a2u

Fig. 11.41 The Hückel orbitals of benzene
and the corresponding energy levels. The
symmetry labels are explained in Chapter
12. The bonding and antibonding character
of the delocalized orbitals reflects the
numbers of nodes between the atoms. In
the ground state, only the bonding orbitals
are occupied.

Method Set up the secular determinant using the same basis as for butadiene, but
note that atoms A and D are also now neighbours. Then solve for the roots of the
secular equation and assess the total π-bond energy. For the delocalization energy,
subtract from the total π-bond energy the energy of two π-bonds.

Answer The hamiltonian matrix is

Diagonalization gives the energies of the orbitals as

E = α + 2β, α, α, α − 2β

Four electrons must be accommodated. Two occupy the lowest orbital (of energy
α + 2β), and two occupy the doubly degenerate orbitals (of energy α). The total 
energy is therefore 4α + 4β. Two isolated π bonds would have an energy 4α + 4β ;
therefore, in this case, the delocalization energy is zero.

Self-test 11.9 Repeat the calculation for benzene. [See next subsection]

(d) Benzene and aromatic stability

The most notable example of delocalization conferring extra stability is benzene and
the aromatic molecules based on its structure. Benzene is often expressed in a mixture
of valence-bond and molecular orbital terms, with typically valence-bond language
used for its σ framework and molecular orbital language used to describe its π
electrons.

First, the valence-bond component. The six C atoms are regarded as sp2 hybridized,
with a single unhydridized perpendicular 2p orbital. One H atom is bonded by
(Csp2,H1s) overlap to each C carbon, and the remaining hybrids overlap to give a 
regular hexagon of atoms (Fig. 11.40). The internal angle of a regular hexagon is 120°,
so sp2 hybridization is ideally suited for forming σ bonds. We see that benzene’s
hexagonal shape permits strain-free σ bonding.

Now consider the molecular orbital component of the description. The six C2p
orbitals overlap to give six π orbitals that spread all round the ring. Their energies are
calculated within the Hückel approximation by diagonalizing the hamiltonian matrix

The MO energies, the eigenvalues of this matrix, are simply

E = α ± 2β, α ± β, α ± β (11.49)

as shown in Fig. 11.41. The orbitals there have been given symmetry labels that we 
explain in Chapter 12. Note that the lowest energy orbital is bonding between all
neighbouring atoms, the highest energy orbital is antibonding between each pair of
neighbours, and the intermediate orbitals are a mixture of bonding, nonbonding, and
antibonding character between adjacent atoms.
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We now apply the building-up principle to the π system. There are six electrons to
accommodate (one from each C atom), so the three lowest orbitals (a2u and the doubly-
degenerate pair e1g) are fully occupied, giving the ground-state configuration a2

2ue4
1g. A

significant point is that the only molecular orbitals occupied are those with net bond-
ing character.

The π-electron energy of benzene is

Eπ = 2(α + 2β) + 4(α + β) = 6α + 8β

If we ignored delocalization and thought of the molecule as having three isolated 
π bonds, it would be ascribed a π-electron energy of only 3(2α + 2β) = 6α + 6β. The 
delocalization energy is therefore 2β ≈ −460 kJ mol−1, which is considerably more
than for butadiene. The π-bond formation energy in benzene is 8β.

This discussion suggests that aromatic stability can be traced to two main contri-
butions. First, the shape of the regular hexagon is ideal for the formation of strong σ
bonds: the σ framework is relaxed and without strain. Second, the π orbitals are such
as to be able to accommodate all the electrons in bonding orbitals, and the delocaliza-
tion energy is large.

11.7 Computational chemistry

The difficulties arising from the severe assumptions of Hückel method have been
overcome by more sophisticated theories that not only calculate the shapes and ener-
gies of molecular orbitals but also predict with reasonable accuracy the structure and
reactivity of molecules. The full treatment of molecular electronic structure is quite
easy to formulate but difficult to implement. However, it has received an enormous
amount of attention by chemists, and has become a keystone of modern chemical re-
search. John Pople and Walter Kohn were awarded the Nobel Prize in Chemistry for
1998 for their contributions to the development of computational techniques for the
elucidation of molecular structure and reactivity.

(a) The Hartree–Fock equations

The starting point is to write down the many-electron wavefunction as a product of
one-electron wavefunctions:

Ψ = ψa,α(1)ψa,β(2) . . . ψz,β(N)

This is the wavefunction for an N-electron closed-shell molecule in which electron 1
occupies molecular orbital ψa with spin α , electron 2 occupies molecular orbital ψa

with spin β, and so on. However, the wavefunction must satisfy the Pauli principle
and change sign under the permutation of any pair of electrons. To achieve this 
behaviour, we write the wavefunction as a sum of all possible permutations with the
appropriate sign:

Ψ = ψa,α(1)ψa,β(2) . . . ψz,β(N) − ψa,α(2)ψa,β(1) . . . ψz,β(N) + · · ·

There are N ! terms in this sum, and the entire sum can be written as a determinant:

(11.50a)Ψ
!

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

, , ,
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1 1 1
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Comment 11.12

The web site contains links to sites
where you may perform semi-empirical
and ab initio calculations on simple
molecules directly from your web
browser.
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The initial factor ensures that the wavefunction is normalized if the component
molecular orbitals are normalized. To save the tedium of writing out large deter-
minants, the wavefunction is normally written simply as

Ψ = (1/N!)1/2det |ψa,α(1)ψa,β(2) . . . ψz,β(N) | (11.50b)

When the determinantal wavefunction is combined with the variation principle
(Section 11.5c), the optimum wavefunctions, in the sense of corresponding to the
lowest total energy, must satisfy the Hartree–Fock equations:

f1ψa,σ(1) = εψa,σ(1) (11.51)

where σ is either α or β. The Fock operator f1 is

f1 = h1 + ∑j{2Jj(1) − Kj(1)} (11.52)

The three terms in this expression are the core hamiltonian

h1 = − ∇2
1 − ∑

n
[11.53a]

the Coulomb operator J, where

Jj(1)ψa(1) = �ψ j*(2)ψj(2) ψa(1)dτ2 [11.53b]

and the exchange operator, K, where

Kj(1)ψa(1) = �ψ j*(2)ψa(2) ψj(1)dτ2 [11.53c]

Although the Hartree–Fock equations look deceptively simple, with the Fock opera-
tor looking like a hamiltonian, we see from these definitions that f actually depends on
the wavefunctions of all the electrons. To proceed, we have to guess the initial form of
the wavefunctions, use them in the definition of the Coulomb and exchange opera-
tors, and solve the Hartree–Fock equations. That process is then continued using the
newly found wavefunctions until each cycle of calculation leaves the energies and
wavefunctions unchanged to within a chosen criterion. This is the origin of the term
self-consistent field (SCF) for this type of procedure.

The difficulty in this procedure is in the solution of the Hartree–Fock equations. To
make progress, we have to express the wavefunctions as linear combinations of M
atomic orbitals χi, and write

ψa =
M

∑
i=1

ciaχi

As we show in the Justification below, the use of a linear combination like this leads to
a set of equations that can be expressed in a matrix form known as the Roothaan
equations:

FC = SCε (11.54)

where F is the matrix formed from the Fock operator:

Fij = �χi*(1)f1χj(1)dτ (11.55a)

and S is the matrix of overlap integrals

Sij = �χi*(1)χj(1)dτ (11.55b)
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Justification 11.5 The Roothaan equations

To construct the Roothaan equations we substitute the linear combination of
atomic orbitals into eqn 11.51, which gives

f1

M

∑
i=1

ciαχi(1) = εα

M

∑
i=1

ciαχi(1)

Now multiply from the left by χ j*(1) and integrate over the coordinates of electron 1:

Fji Sji

M

∑
i=1

ciα �χj(1)* f(1)χi(1)dr1 = εα

M

∑
i=1

ciα �χj(1)*χi(1)dr1

That is,

M

∑
i=1

Fji ciα = εα

M

∑
i=1

Sji ciα

This expression has the form of the matrix equation in eqn 11.54.

(b) Semi-empirical and ab initio methods

There are two main strategies for continuing the calculation from this point. In the
semi-empirical methods, many of the integrals are estimated by appealing to spec-
troscopic data or physical properties such as ionization energies, and using a series of
rules to set certain integrals equal to zero. In the ab initio methods, an attempt is
made to calculate all the integrals that appear in the Fock and overlap matrices. Both
procedures employ a great deal of computational effort and, along with cryptanalysts
and meteorologists, theoretical chemists are among the heaviest users of the fastest
computers.

The Fock matrix has elements that consist of integrals of the form

(AB |CD) = �A(1)B(1) C(2)D(2)dτ1dτ2 (11.56)

where A, B, C, and D are atomic orbitals that in general may be centred on different
nuclei. It can be appreciated that, if there are several dozen atomic orbitals used to
build the molecular orbitals, then there will be tens of thousands of integrals of this
form to evaluate (the number of integrals increases as the fourth power of the number
of atomic orbitals in the basis). One severe approximation is called complete neglect
of differential overlap (CNDO), in which all integrals are set to zero unless A and B
are the same orbitals centred on the same nucleus, and likewise for C and D. The sur-
viving integrals are then adjusted until the energy levels are in good agreement with
experiment. The more recent semi-empirical methods make less draconian decisions
about which integrals are to be ignored, but they are all descendants of the early
CNDO technique. These procedures are now readily available in commercial software
packages and can be used with very little detailed knowledge of their mode of calcula-
tion. The packages also have sophisticated graphical output procedures, which enable
one to analyse the shapes of orbitals and the distribution of electric charge in
molecules. The latter is important when assessing, for instance, the likelihood that a
given molecule will bind to an active site in an enzyme.

Commercial packages are also available for ab initio calculations. Here the problem
is to evaluate as efficiently as possible thousands of integrals. This task is greatly facil-
itated by expressing the atomic orbitals used in the LCAOs as linear combinations of
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Gaussian orbitals. A Gaussian type orbital (GTO) is a function of the form e−ζr2
. The

advantage of GTOs over the correct orbitals (which for hydrogenic systems are pro-
portional to e−ζr) is that the product of two Gaussian functions is itself a Gaussian
function that lies between the centres of the two contributing functions (Fig. 11.42).
In this way, the four-centre integrals like that in eqn 11.56 become two-centre inte-
grals of the form

(AB |CD) = �X(1) Y(2)dτ1dτ2 (11.57)

where X is the Gaussian corresponding to the product AB and Y is the corresponding
Gaussian from CD. Integrals of this form are much easier and faster to evaluate numeric-
ally than the original four-centre integrals. Although more GTOs have to be used to
simulate the atomic orbitals, there is an overall increase in speed of computation.

(c) Density functional theory

A technique that has gained considerable ground in recent years to become one of the
most widely used techniques for the calculation of molecular structure is density func-
tional theory (DFT). Its advantages include less demanding computational effort, less
computer time, and—in some cases (particularly d-metal complexes)—better agree-
ment with experimental values than is obtained from Hartree–Fock procedures.

The central focus of DFT is the electron density, ρ, rather than the wavefunction ψ.
The ‘functional’ part of the name comes from the fact that the energy of the molecule
is a function of the electron density, written E[ρ], and the electron density is itself a
function of position, ρ(r), and in mathematics a function of a function is called a func-
tional. The exact ground-state energy of an n-electron molecule is

E[ρ] = EK + EP;e,N + EP;e,e + EXC[ρ] (11.58)

where EK is the total electron kinetic energy, EP;e,N the electron–nucleus potential 
energy, EP;e,e the electron–electron potential energy, and EXC[ρ] the exchange–
correlation energy, which takes into account all the effects due to spin. The orbitals
used to construct the electron density from

ρ(r) =
N

∑
i=1

|ψi(r) |2 (11.59)

are calculated from the Kohn–Sham equations, which are found by applying the vari-
ation principle to the electron energy, and are like the Hartree–Fock equations except
for a term VXC, which is called the exchange–correlation potential:

(11.60)

The exchange–correlation potential is the ‘functional derivative’ of the exchange–
correlation energy:

VXC[ρ] = (11.61)

The Kohn–Sham equations are solved iteratively and self-consistently. First, we
guess the electron density. For this step it is common to use a superposition of atomic
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Fig. 11.42 The product of two Gaussian
functions (the purple curves) is itself a
Gaussian function located between the two
contributing Gaussians.

Comment 11.13

Consider the functional G[ f ] where f is a
function of x. When x changes to x + δx,
the function changes to f + δf and the
functional changes to G[ f + δf]. By
analogy with the derivative of a
function, the functional derivative is
then defined as

= lim
δf→0

where the manner in which δf goes to
zero must be specified explicitly. See
Appendix 2 for more details and
examples.

G[ f + δf ] − G[ f ]

δf

δG

δf



396 11 MOLECULAR STRUCTURE

electron densities. Then the exchange–correlation potential is calculated by assuming
an approximate form of the dependence of the exchange–correlation energy on the
electron density and evaluating the functional derivative in eqn 11.61. For this step,
the simplest approximation is the local-density approximation and to write

EXC[ρ] = �ρ(r)εXC[ρ(r)]dr (11.62)

where εXC is the exchange–correlation energy per electron in a homogeneous gas of
constant density. Next, the Kohn–Sham equations are solved to obtain an initial set of
orbitals. This set of orbitals is used to obtain a better approximation to the electron
density (from eqn 11.59) and the process is repeated until the density and the 
exchange–correlation energy are constant to within some tolerance.

11.8 The prediction of molecular properties

The results of molecular orbital calculations are only approximate, with deviations
from experimental values increasing with the size of the molecule. Therefore, one goal
of computational chemistry is to gain insight into trends in properties of molecules,
without necessarily striving for ultimate accuracy. In the next sections we give a brief
summary of strategies used by computational chemists for the prediction of molecu-
lar properties.

(a) Electron density and the electrostatic potential surfaces

One of the most significant developments in computational chemistry has been the
introduction of graphical representations of molecular orbitals and electron densities.
The raw output of a molecular structure calculation is a list of the coefficients of 
the atomic orbitals in each molecular orbital and the energies of these orbitals. The
graphical representation of a molecular orbital uses stylized shapes to represent the
basis set, and then scales their size to indicate the coefficient in the linear combination.
Different signs of the wavefunctions are represented by different colours.

Once the coefficients are known, we can build up a representation of the electron
density in the molecule by noting which orbitals are occupied and then forming the
squares of those orbitals. The total electron density at any point is then the sum of the
squares of the wavefunctions evaluated at that point. The outcome is commonly repres-
ented by a isodensity surface, a surface of constant total electron density (Fig. 11.43).
As shown in the illustration, there are several styles of representing an isodensity sur-
face, as a solid form, as a transparent form with a ball-and-stick representation of the
molecule within, or as a mesh. A related representation is a solvent-accessible surface
in which the shape represents the shape of the molecule by imagining a sphere repres-
enting a solvent molecule rolling across the surface and plotting the locations of the
centre of that sphere.

One of the most important aspects of a molecule other than its geometrical shape is
the distribution of charge over its surface. The net charge at each point on an isoden-
sity surface can be calculated by subtracting the charge due to the electron density at
that point form the charge due to the nuclei: the result is an electrostatic potential sur-
face (an ‘elpot surface’) in which net positive charge is shown in one colour and net
negative charge is shown in another, with intermediate gradations of colour (Fig. 11.44).

Representations such as those we have illustrated are of critical importance in a
number of fields. For instance, they may be used to identify an electron-poor region
of a molecule that is susceptible to association with or chemical attack by an electron-
rich region of another molecule. Such considerations are important for assessing the
pharmacological activity of potential drugs.

(a)

(b)

(c)

Fig. 11.43 Various representations of an
isodensity surface of ethanol (a) solid
surface, (b) transparent surface, and 
(c) mesh surface.

Fig. 11.44 An elpot diagram of ethanol.
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(b) Thermodynamic and spectroscopic properties

We already saw in Section 2.8 that computational chemistry is becoming the tech-
nique of choice for estimating standard enthalpies of formation of molecules with
complex three-dimensional structures. The computational approach also makes 
it possible to gain insight into the effect of solvation on the enthalpy of formation
without conducting experiments. A calculation performed in the absence of solvent
molecules estimates the properties of the molecule of interest in the gas phase.
Computational methods are available that allow for the inclusion of several solvent
molecules around a solute molecule, thereby taking into account the effect of molec-
ular interactions with the solvent on the enthalpy of formation of the solute. Again,
the numerical results are only estimates and the primary purpose of the calculation 
is to predict whether interactions with the solvent increase or decrease the enthalpy 
of formation. As an example, consider the amino acid glycine, which can exist in a
neutral (4) or zwitterionic (5) form, in which the amino group is protonated and the
carboxyl group is deprotonated. It is possible to show computationally that in the gas
phase the neutral form has a lower enthalpy of formation than the zwitterionic form.
However, in water the opposite is true because of strong interactions between the
polar solvent and the charges in the zwitterion.

Molecular orbital calculations can also be used to predict trends in electrochemical
properties, such as standard potentials (Chapter 7). Several experimental and com-
putational studies of aromatic hydrocarbons indicate that decreasing the energy of the
LUMO enhances the ability of a molecule to accept an electron into the LUMO, with an
attendant increase in the value of the molecule’s standard potential. The effect is also
observed in quinones and flavins, co-factors involved in biological electron transfer
reactions. For example, stepwise substitution of the hydrogen atoms in p-benzoquinone
by methyl groups (-CH3) results in a systematic increase in the energy of the LUMO
and a decrease in the standard potential for formation of the semiquinone radical (6):

The standard potentials of naturally occurring quinones are also modified by the pres-
ence of different substituents, a strategy that imparts specific functions to specific
quinones. For example, the substituents in coenzyme Q are largely responsible for
poising its standard potential so that the molecule can function as an electron shuttle
between specific electroactive proteins in the respiratory chain (Impact I17.2).

We remarked in Chapter 8 that a molecule can absorb or emit a photon of energy
hc/λ, resulting in a transition between two quantized molecular energy levels. The
transition of lowest energy (and longest wavelength) occurs between the HOMO and
LUMO. We can use calculations based on semi-empirical, ab initio, and DFT methods
to correlate the calculated HOMO–LUMO energy gap with the wavelength of absorp-
tion. For example, consider the linear polyenes shown in Table 11.5: ethene (C2H4),
butadiene (C4H6), hexatriene (C6H8), and octatetraene (C8H10), all of which absorb
in the ultraviolet region of the spectrum. The table also shows that, as expected, the
wavelength of the lowest-energy electronic transition decreases as the energy separa-
tion between the HOMO and LUMO increases. We also see that the smallest HOMO–
LUMO gap and longest transition wavelength correspond to octatetraene, the longest
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polyene in the group. It follows that the wavelength of the transition increases with
increasing number of conjugated double bonds in linear polyenes. Extrapolation of
the trend suggests that a sufficiently long linear polyene should absorb light in the 
visible region of the electromagnetic spectrum. This is indeed the case for β-carotene
(7), which absorbs light with λ ≈ 450 nm. The ability of β-carotene to absorb visible
light is part of the strategy employed by plants to harvest solar energy for use in photo-
synthesis (Chapter 23).

Checklist of key ideas

1. In the Born–Oppenheimer approximation, nuclei are treated
as stationary while electrons move around them.

2. In valence-bond theory (VB theory), a bond is regarded as
forming when an electron in an atomic orbital on one atoms
pairs its spin with that of an electron in an atomic orbital on
another atom.

3. A valence bond wavefunction with cylindrical symmetry
around the internuclear axis is a σ bond. A π bond arises from
the merging of two p orbitals that approach side-by-side and
the pairing of electrons that they contain.

4. Hybrid orbitals are mixtures or atomic orbitals on the same atom
and are invoked in VB theory to explain molecular geometries.

5. In molecular orbital theory (MO theory), electrons are treated
as spreading throughout the entire molecule.

6. A bonding orbital is a molecular orbital that, if occupied,
contributes to the strength of a bond between two atoms. An
antibonding orbital is a molecular orbital that, if occupied,
decreases the strength of a bond between two atoms.

7. A σ molecular orbital has zero orbital angular momentum
about the internuclear axis. A π molecular orbital has one unit

of angular momentum around the internuclear axis; in a
nonlinear molecule, it has a nodal plane that includes the
internucelar axis.

8. The electron configurations of homonuclear diatomic
molecules are shown in Figs. 11.31 and 11.33.

9. When constructing molecular orbitals, we need to consider
only combinations of atomic orbitals of similar energies and
of the same symmetry around the internuclear axis.

10. The bond order of a diatomic molecule is b = 1–2(n − n*),
where n and n* are the numbers of electrons in bonding 
and antibonding orbitals, respectively.

11. The electronegativity, χ, of an element is the power of its
atoms to draw electrons to itself when it is part of a
compound.

12. In a bond between dissimilar atoms, the atomic orbital
belonging to the more electronegative atom makes the larger
contribution to the molecular orbital with the lowest energy.
For the molecular orbital with the highest energy, the
principal contribution comes from the atomic orbital
belonging to the less electronegative atom.

Table 11.5 Ab initio calculations and spectroscopic data

Polyene {E(HOMO) − E(LUMO)}/eV λ /nm

(C2H4) 18.1 163

14.5 217

12.7 252

11.8 304
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