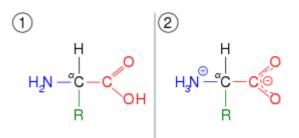
Teacher: DR. SUBHANKAR SARDAR Class : Semester-2 Paper: C4T: Organic Chemistry Topic : General Treatment of Reaction Mechanism II (Tautomerism)

Comments: Read the highlighted parts of the notes thoroughly. This part is very important for final examination.

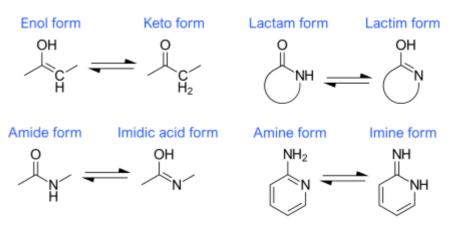

References:

- 1) Part-1: Wikipedia
- 2) Part-2: Internet
- 3) Part-3: Marchs advanced organic chemistry reactions mechanism

WikipediA

Tautomer

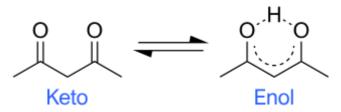
The concept of tautomerizations is called **tautomerism**. Tautomerism is also called desmotropism. The <u>chemical</u> <u>reaction</u> interconverting the two is called **tautomerization**.


The two tautomers of an amino acid: (1) neutral and (2) zwitterionic forms.

Care should be taken not to confuse tautomers with depictions of "contributing structures" in chemical resonance. Tautomers are distinct chemical species and can be identified as such by their differing spectroscopic data,^[5] whereas resonance structures are merely convenient depictions and do not physically exist.

Contents
Examples
Prototropy
Valence tautomerism
See also
References
External links

Examples


Tautomerization is pervasive in organic chemistry. It is typically associated with polar molecules and ions containing functional groups that are at least weakly acidic. Most common tautomers exist in pairs, which means that the proton is located at one of two positions, and even more specifically the most common form involves а hydrogen changing places with a double bond: $H-X-Y=Z \rightleftharpoons X=Y-Z-H$. Common tautomeric pairs

Some examples of tautomers

include:^[6]

- ketone enol: H−O−C=C ⇒ O=C−C−H, see keto–enol tautomerism
- <u>enamine</u> <u>imine</u>: $H-N-C=C \rightleftharpoons N=C-C-H$
 - cyanamide carbodiimide
 - <u>guanidine</u> guanidine guanidine: With a central carbon surrounded by three nitrogens, a guanidine group allows this transform in three possible orientations

Keto-enol tautomerization typically strongly favors the keto tautomer, but an important exception is the case of 1,3-diketones such as acetylacetone.

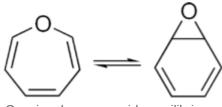
- amide imidic acid: H−N−C=O
 N=C−O−H (e.g., the latter is encountered during <u>nitrile</u> <u>hydrolysis</u> reactions)
 - Iactam lactim, a cyclic form of amide-imidic acid tautomerism in 2-pyridone and derived structures such as the nucleobases guanine, thymine, and cytosine
- imine imine, e.g., during pyridoxal phosphate catalyzed enzymatic reactions

• $R^1R^2C(=NCHR^3R^4) \rightleftharpoons (R^1R^2CHN=)CR^3R^4$

- nitro *aci*-nitro (nitronic acid): RR'HC–N⁺(=O)(O⁻) \rightleftharpoons RR'C=N⁺(O⁻)(OH)
- <u>nitroso</u> <u>oxime</u>: H–C–N=O \rightleftharpoons C=N–O–H
- <u>ketene ynol</u>, which involves a triple bond: $H-C=C=O \rightleftharpoons C=C-O-H$
- <u>amino acid</u> ammonium carboxylate, which applies to the building blocks of the proteins. This shifts the proton more than two atoms away, producing a <u>zwitterion</u> rather than shifting a double bond: H₂N-CH₂-COOH ≓ H₃N⁺-CH₂-CO₂⁻

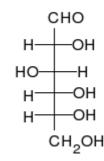
Prototropy

Prototropy is the most common form of tautomerism and refers to the relocation of a proton.^[7] Prototropic tautomerism may be considered a subset of <u>acid-base</u> behavior. Prototropic tautomers are sets of isomeric protonation states with the same empirical formula and total charge. Tautomerizations are catalyzed by:


- <u>bases</u>, involving a series of steps: deprotonation, formation of a <u>delocalized</u> <u>anion</u> (e.g., an <u>enolate</u>), and <u>protonation</u> at a different position of the anion; and
- acids, involving a series of steps: protonation, formation of a delocalized cation, and deprotonation at a different position adjacent to the cation).

Two specific further subcategories of tautomerizations:

- Annular tautomerism is a type of prototropic tautomerism wherein a proton can occupy two or more positions of a <u>heterocyclic</u> system, for example, 1*H*- and 3*H*-<u>imidazole</u>; 1*H*-, 2*H*- and 4*H*-1,2,4-triazole; 1*H*- and 2*H*- isoindole.^[8]
- Ring-chain tautomers occur when the movement of the proton is accompanied by a change from an open structure to a ring, such as the <u>open chain</u> and cyclic <u>hemiacetal</u> (typically <u>pyranose</u> or <u>furanose</u> forms) of many sugars.^[6] (See <u>Carbohydrate § Ring-straight chain</u> <u>isomerism</u>.) The tautomeric shift can be described as H-O · C=O = O-C-O-H, where the "·" indicates the initial absence of a bond.


Valence tautomerism

Valence tautomerism is a type of tautomerism in which single and/or double bonds are rapidly formed and ruptured, without migration of atoms or groups.^[9] It is distinct from prototropic tautomerism, and involves processes with rapid reorganisation of bonding electrons.

Oxepin – benzene oxide equilibrium

A pair of valence tautomers with formula C_6H_6O are benzene oxide and <u>oxepin</u>.^{[9][10]}

Glucose can exist in both a straightchain and ring form.

Other examples of this type of tautomerism can be found in <u>bullvalene</u>, and in open and closed forms of certain heterocycles, such as organic azides and

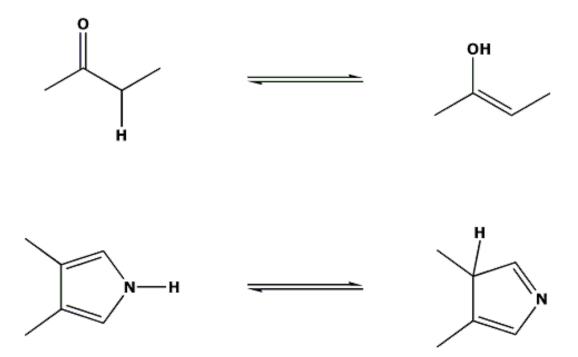
<u>tetrazoles</u>,^[11] or <u>mesoionic</u> <u>münchnone</u> and acylamino ketene. Valence tautomerism requires a change in molecular geometry and should not be confused with canonical

Valence tautomerism requires a change in molecular geometry and should not be confused with canonic resonance structures or mesomers.

See also

Fluxional molecule

References


- "tautomer" (https://en.oxforddictionaries.com/definition/tautomer). Oxford Dictionaries -English. Archived (https://web.archive.org/web/20180219090719/https://en.oxforddictionaries.e om/definition/tautomer) from the original on 2018-02-19.
- 2. Antonov L (2013). *Tautomerism: Methods and Theories* (1st ed.). Weinheim, Germany: Wiley-VCH. ISBN 978-3-527-33294-6.
- 3. Smith MB, March J (2001). Advanced Organic Chemistry (5th ed.). New York: Wiley Interscience. pp. 1218–1223. ISBN 978-0-471-58589-3.
- 4. <u>Katritzky AR</u>, Elguero J, et al. (1976). *The Tautomerism of heterocycles* (https://archive.org/det ails/tautomerismofhet0000unse). New York: Academic Press. ISBN 978-0-12-020651-3.
- Smith, Kyle T.; Young, Sherri C.; DeBlasio, James W.; Hamann, Christian S. (27 January 2016). "Measuring Structural and Electronic Effects on Keto–Enol Equilibrium in 1,3-Dicarbonyl Compounds". *Journal of Chemical Education*. 93 (4): 790–794. doi:10.1021/acs.jchemed.5b00170 (https://doi.org/10.1021%2Facs.jchemed.5b00170).
- 6. Smith, Michael B.; <u>March, Jerry</u> (2007), <u>Advanced Organic Chemistry: Reactions,</u> <u>Mechanisms, and Structure (https://books.google.com/books?id=JDR-nZpojeEC&printsec=fro</u> <u>ntcover) (6th ed.), New York: Wiley-Interscience, ISBN 978-0-471-72091-1</u>
- 7. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Tautomerism (https://goldbook.iupac.org/T06252.html)". doi:10.1351/goldbook.T06252 (https://doi.org/10.1351%2Fgoldbook.T06252)

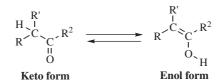
Tautomerism

Tautomers are isomers of a compound which differ only in the position of the protons and electrons. The carbon skeleton of the compound is unchanged. A reaction which involves simple proton transfer in an intramolecular fashion is called a tautomerism.

Keto-enol tautomerism is a very common process, and is acid or base catalysed. Typically the 'keto' form of the compound is more stable, but in some instances the 'enol' form can be the more stable.

Some examples of tautomerism:

NOTE: The equilibrium arrows above *do not* intend to show the *position* of the equilibrium, only that an equilibrium exists between the two forms.


forms display no more charge separation than the main form. Muller and Mulliken call this *isovalent hyperconjugation*: Even here the main form contributes more to the hybrid than the others.

TAUTOMERISM³⁷⁸

There remains one topic to be discussed in our survey of chemical bonding in organic compounds. For most compounds, all the molecules have the same structure, whether or not this structure can be satisfactorily represented by a Lewis formula. But for many other compounds there is a mixture of two or more structurally distinct compounds that are in rapid equilibrium. When this phenomenon, called *tautomerism*,³⁷⁹ exists, there is a rapid shift back and forth among the molecules. In most cases, it is a proton that shifts from one atom of a molecule to another.

Keto–Enol Tautomerism³⁸⁰

A very common form of tautomerism is that between a carbonyl compound containing an a hydrogen and its enol form:³⁸¹ Such equilibria are pH dependent, as in the case of 2-acetylcyclohexanone.³⁸²

In simple cases ($R^2 = H$, alkyl, OR, etc.) the equilibrium lies well to the left (Table 2.1). The reason can be seen by examining the bond energies in Table 1.7.

³⁷⁸Baker, J.W. *Tautomerism*; D. Van Nostrand Company, Inc., New York, **1934**; Minkin, V.I.; Olekhnovich, L.P.; Zhdanov, Y.A. *Molecular Design of Tautomeric Compounds*, D. Reidel Publishing Co.: Dordrecht, Holland, **1988**.

³⁷⁹For reviews, see Toullec, J. Adv. Phys. Org. Chem. **1982**, 18, 1; Kołsov, A.I.; Kheifets, G.M. Russ. Chem. Rev. **1971**, 40, 773; **1972**, 41, 452–467; Forsén, S.; Nilsson, M., in Zabicky, J. The Chemistry of the Carbonyl Group, Vol. 2, Wiley, NY, **1970**, pp. 157–240.

³⁸⁰The mechanism for conversion of one tautomer to another is discussed in Chapter 12 (reaction **12-3**).

³⁸⁴Capponi, M.; Gut, I.G.; Hellrung, B.; Persy, G.; Wirz, J. Can. J. Chem. **1999**, 77, 605. For a treatise, see Rappoport, Z. The Chemistry of Enols, Wiley, NY, **1990**.

³⁸²Iglesias, E. J. Org. Chem, 2003, 68, 2680.

Compound	Enol Content, %	References
Acetone	6×10^{-7}	383-
PhCOCH ₃	$1.1 imes 10^{-6}$	384
Cyclopentanone	$1 imes 10^{-6}$	385
CH ₃ CHO	$6 imes 10^{-5}$	386 —
Cyclohexanone	$4 imes 10^{-5}$	385
Butanal	$5.5 imes10^{-4}$	387
(CH ₃) ₂ CHCHO	$1.4 imes 10^{-2}$	388,387
Ph ₂ CHCHO	9.1	389
CH ₃ COOEt	No enol found ^a	385
CH ₃ COCH ₂ COOEt	8.4	390 —
CH ₃ COCH ₂ COCH ₃	80	322
PhCOCH ₂ COCH ₃	89.2	385
EtOOCCH ₂ COOEt	7.7×10^{-3}	385
$N \equiv C - CH_2 COOEt$	$2.5 imes10^{-1}$	385
Indane-1-one	$3.3 imes10^{-8}$	391
Malonamide	No enol found	392 —

TABLE 2.1. The Enol Content of Some Carbonyl Compounds

^{*a*}Less than 1 part in 10 million.

The keto form differs from the enol form in possessing a C–H, a C–C, and a C=O bond, where the enol has a C=C, a C–O, and an O–H bond. The approximate sum of the first three is 359 kcal mol⁻¹ (1500 kJ mol⁻¹) and of the second three is 347 kcal mol⁻¹ (1452 kJ mol⁻¹). The keto form is therefore thermodynamically more stable by \sim 12 kcal mol⁻¹ (48 kJ mol⁻¹) and enol forms cannot normally be isolated.³⁹³ In certain cases, however, a larger amount of the enol form is present,

³⁸³Tapuhi, E.; Jencks, W.P. J. Am. Chem. Soc. **1982**, 104, 5758; Chiang, Y.; Kresge, A.J.; Tang, Y.S.; Wirz, J. J. Am. Chem. Soc. **1984**, 106, 460. See also, Hine, J.; Arata, K. Bull. Chem. Soc. Jpn. **1976**, 49, 3089; Guthrie, J.P. Can. J. Chem. 1979, 57, 797, 1177; Dubois, J.E.; El-Alaoui, M.; Toullec, J. J. Am. Chem. Soc. **1981**, 103, 5393; Toullec, J. Tetrahedron Lett. 1984, 25, 4401; Chiang, Y.; Kresge, A.J.; Schepp, N.P. J. Am. Chem. Soc. **1989**, 111, 3977.

³⁸⁴Keeffe, J.R.; Kresge, A.R.; Toullec, J. Can. J. Chem. **1986**, 64, 1224.

³⁸⁸Chiang, Y.; Kresge, A.J.; Walsh, P.A. J. Am. Chem. Soc. 1986, 108, 6314.

³⁹¹Jefferson, E.A.; Keeffe, J.R.; Kresge, A.J. J. Chem. Soc. Perkin Trans. 2 1995, 2041.

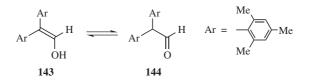
³⁸⁵Gero, A. J. Org. Chem. 1954, 19, 469, 1960; Keeffe, J.R., Kresge, A.J.; Schepp, N.P. J. Am. Chem. Soc. 1990, 112, 4862; Iglesias, E. J. Chem. Soc. Perkin Trans. 2 1997, 431. See these papers for values for other simple compounds.

 ³⁸⁶Chiang, Y.; Hojatti, M.; Keeffe, J.R.; Kresge, A.J.; Schepp, N.P.; Wirz, J. J. Am. Chem. Soc. **1987**, 109, 4000.
³⁸⁷Bohne, C.; MacDonald, I.D.; Dunford, H.B. J. Am. Chem. Soc. **1986**, 108, 7867.

³⁸⁹Chiang, Y.; Kresge, A.J.; Krogh, E.T. J. Am. Chem. Soc. 1988, 110, 2600.

³⁹⁰Moriyasu, M.; Kato, A.; Hashimoto, Y. J. Chem. Soc. Perkin Trans. 2 1986, 515. For enolization of βketoamides, see Hynes, M.J.; Clarke, E.M. J. Chem. Soc. Perkin Trans. 2 1994, 901.

³⁹²Williams, D.L.H.; Xia, L. J. Chem. Soc. Chem. Commun. 1992, 985.

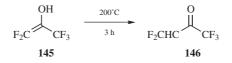

³⁰³For reviews on the generation of unstable enols, see Kresge, A.J. Pure Appl. Chem. **1991**, 63, 213; Capon, B., in Rappoport, Z. The Chemistry of Enols, Wiley, NY, **1990**, pp. 307–322.

and it can even be the predominant form.³⁹⁴ There are three main types of the more stable enols:³⁹⁵

1. Molecules in which the enolic double bond is in conjugation with another double bond. Some of these are shown in Table 2.1. As the table shows, carboxylic esters have a much smaller enolic content than ketones. In molecules like acetoacetic ester (142), the enol is also stabilized by internal hydrogen bonding, which is unavailable to the keto form:

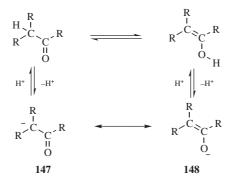
2. Molecules that contain two or three bulky aryl groups.³⁹⁶ An example is 2,2dimesitylethenol (143). In this case the keto content at equilibrium is only 5%.³⁹⁷ In cases such as this, steric hindrance (p. 230) destabilizes the keto form. In 143, the two aryl groups are $\sim 120^{\circ}$ apart, but in 144 they must move closer together ($\sim 109.5^{\circ}$). Such compounds are often called *Fuson-type enols*.³⁹⁸ There is one example of an amide with a bulky aryl group [*N*methyl bis(2,4,6-triisopropylphenyl)acetamide] that has a measurable enol content, in sharp contrast to most amides.³⁹⁹

³⁰⁴For reviews of stable enols, see Kresge, A.J. Acc. Chem. Res. 1990, 23, 43; Hart, H.; Rappoport, Z.; Biali, S.E., in Rappoport, Z. The Chemistry of Enols, Wiley, NY, 1990, pp. 481–589; Hart, H. Chem. Rev, 1979, 79, 515; Hart, H.; Sasaoka, M. J. Chem. Educ. 1980, 57, 685.


³⁹⁵For some examples of other types, see Pratt, D.V.; Hopkins, P.B. J. Am. Chem. Soc. **1987**, 109, 5553; Nadler, E.B.; Rappoport, Z.; Arad, D.; Apeloig, Y. J. Am. Chem. Soc. **1987**, 109, 7873.

 ³⁹⁶For a review, see Rappoport, Z.; Biali, S.E. Acc. Chem. Res. 1988, 21, 442. For a discussion of their structures, see Kaftory, M.; Nugiel, D.A.; Biali, D.A.; Rappoport, Z. J. Am. Chem. Soc. 1989, 111, 8181.
³⁹⁷Biali, S.E.; Rappoport, Z. J. Am. Chem. Soc. 1985, 107, 1007. See also, Kaftory, M.; Biali, S.E.; Rappoport, Z. J. Am. Chem. Soc. 1985, 107, 1007. See also, Kaftory, M.; Biali, S.E.; Rappoport, Z. J. Am. Chem. Soc. 1985, 107, 1007. See also, Kaftory, M.; Biali, S.E.; Rappoport, Z. J. Am. Chem. Soc. 1985, 107, 1701; Nugiel, D.A.; Nadler, E.B.; Rappoport, Z. J. Am. Chem. Soc. 1987, 1701; Nugiel, D.A.; Nadler, E.B.; Rappoport, Z. J. Am. Chem. Soc. 1987, 109, 2112; O'Neill, P; Hegarty, A.F. J. Chem. Soc. Chem. Commun. 1987, 744; Becker, H.; Andersson, K. Tetrahedron Lett. 1987, 28, 1323.

³⁰⁸First synthesized by Fuson, R.C.; see, for example, Fuson, R.C.; Southwick, P.L.; Rowland, S.P. J. Am. Chem. Soc. 1944, 66, 1109.


³⁹⁹Frey, J.; Rappoport, Z. J. Am. Chem. Soc. 1996, 118, 3994.

3. Highly fluorinated enols, such as **145**.⁴⁰⁰

In this case, the enol form is not more stable than the keto form (146). The enol form is less stable, and converts to the keto form upon prolonged heating). It can, however, be kept at room temperature for long periods of time because the tautomerization reaction (12-3) is very slow, owing to the electron-withdrawing power of the fluorines.

Frequently, when the enol content is high, both forms can be isolated. The pure keto form of acetoacetic ester melts at -39° C, while the enol is a liquid even at -78° C. Each can be kept at room temperature for days if catalysts, such as acids or bases, are rigorously excluded.⁴⁰¹ Even the simplest enol, vinyl alcohol CH₂=CHOH, has been prepared in the gas phase at room temperature, where it has a half-life of ~30 min.⁴⁰² The enol Me₂C=CCHOH is indefinitely stable in the solid state at -78° C and has a half-life of ~24 h in the liquid state at 25°C.⁴⁰³ When both forms cannot be isolated, the extent of enolization is often measured by NMR.⁴⁰⁴

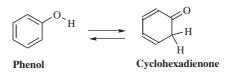
⁴⁰⁰For a review, see Bekker, R.A.; Knunyants, I.L. Sov. Sci. Rev. Sect. B 1984, 5, 145.

⁴⁰¹For an example of particularly stable enol and keto forms, which could be kept in the solid state for more than a year without significant interconversion, see Schulenberg, J.W. J. Am. Chem. Soc. **1968**, 90, 7008.

⁴⁰²Saito, S. Chem. Phys. Lett. 1976, 42, 399. See also, Capon, B.; Rycroft, D.S.; Watson, T.W.; Zucco, C. J. Am. Chem. Soc. 1981, 103, 1761; Holmes, J.L.; Lossing, F.P. J. Am. Chem. Soc. 1982, 104, 2648; McGarrity, J.F.; Cretton, A.; Pinkerton, A.A.; Schwarzenbach, D.; Flack, H.D. Angew. Chem. Int. Ed. 1983, 22, 405; Rodler, M.; Blom, C.E.; Bauder, A. J. Am. Chem. Soc. 1984, 106, 4029; Capon, B.; Guo, B.; Kwok, F.C.; Siddhanta, A.K.; Zucco, C. Acc. Chem. Res. 1988, 21, 135.

403 Chin, C.S.; Lee, S.Y.; Park, J.; Kim, S. J. Am. Chem. Soc. 1988, 110, 8244.

404 Cravero, R.M.; González-Sierra, M.; Olivieri, A.C. J. Chem. Soc. Perkin Trans. 2 1993, 1067.


102 DELOCALIZED CHEMICAL BONDING

The extent of enolization⁴⁰⁵ is greatly affected by solvent,⁴⁰⁶ concentration, and temperature. Lactone enols, for example, have been shown to be stable in the gas phase, but unstable in solution.⁴⁰⁷ Thus, acetoacetic ester has an enol content of 0.4% in water and 19.8% in toluene.⁴⁰⁸ In this case, water reduces the enol concentration by hydrogen bonding with the carbonyl, making this group less available for internal hydrogen bonding. As an example of the effect of temperature, the enol content of pentan-2,4-dione, CH₃COCH₂COCH₃, was found to be 95, 68, and 44%, respectively, at 22, 180, and 275° C.⁴⁰⁹ When a strong base is present, both the enol and the keto form can lose a proton. The resulting anion (the *enolate ion*) is the same in both cases. Since **147** and **148** differ only in placement of electrons, *they* are not tautomers, but canonical forms. The true structure of the enolate ion is a hybrid of **147** and **148** although **148** contributes more, since in this form the negative charge is on the more electronegative atom.

Other Proton-Shift Tautomerism

In all such cases, the anion resulting from removal of a proton from either tautomer is the same because of resonance. Some examples are:⁴¹⁰

1. *Phenol–Keto Tautomerism.*⁴¹¹

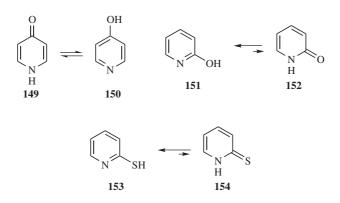
For most simple phenols, this equilibrium lies well to the side of the phenol, since only on that side is there aromaticity. For phenol itself, there is no evidence for the existence of the keto form.⁴¹² However, the keto form

⁴⁰⁵For a review of keto-enol equilibrium constants, see Toullec, J. in Rappoport, Z. The Chemistry of Enols, Wiley, NY, **1990**, pp. 323–398.

⁴⁰⁶For an extensive study, see Mills, S.G.; Beak, P. J. Org. Chem. **1985**, 50, 1216. For keto-enol tautomerism in aqueous alcohol solutions, see Blokzijl, W.; Engberts, J.B.F.N.; Blandamer, M.J. J. Chem. Soc. Perkin Trans. 2 **1994**, 455; For theoretical calculations of keto-enol tautomerism in aqueous solutions, see Karelson, M.; Maran, U.; Katritzky, A.R. Tetrahedron **1996**, 52, 11325.

⁴⁰⁷ Tureě ek, F.; Vivekananda, S.; Sadílek, M.; Poláš ek, M. J. Am. Chem. Soc,. 2002, 124, 13282.

⁴⁰⁸Meyer, K.H. Leibigs Ann. Chem. 1911, 380, 212. See also, Moriyasu, M.; Kato, A.; Hashimoto, Y. J. Chem. Soc. Perkin Trans. 2 1986, 515.


⁴⁰⁹ Hush, N.S.; Livett, M.K.; Peel, J.B.; Willett, G.D. Aust. J. Chem. 1987, 40, 599.

⁴¹⁰For a review of the use of X-ray crystallography to determine tautomeric forms, see Furmanova, N.G. *Russ. Chem. Rev.* **1981**, *50*, 775.

⁴¹¹For reviews, see Ershov, V.V.; Nikiforov, G.A. Russ. Chem. Rev. **1966**, 35, 817; Forsén, S.; Nilsson, M., in Zabicky, J. The Chemistry of the Carbonyl Group, Vol. 2, Wiley, NY, **1970**, pp. 168–198.

⁴¹²Keto forms of phenol and some simple derivatives have been generated as intermediates with very short lives, but long enough for spectra to be taken at 77 K. Lasne, M.; Ripoll, J.; Denis, J. *Tetrahedron Lett.* **1980**, 21, 463. See also, Capponi, M.; Gut, I.; Wirz, J. *Angew. Chem. Int. Ed.* **1986**, 25, 344.

becomes important and may predominate: (1) where certain groups, such as a second OH group or an N=O group, are present;⁴¹³ (2) in systems of fused aromatic rings;⁴¹⁴ (3) in heterocyclic systems. In many heterocyclic compounds in the liquid phase or in solution, the keto form is more stable,⁴¹⁵ although in the vapor phase the positions of many of these equilibria are reversed.⁴¹⁶ For example, in the equilibrium between 4-pyridone (**149**) and 4-hydroxypyridine (**150**), **149** is the only form detectable in ethanolic solution, while **150** predominates in the vapor phase.⁴¹⁶ In other heterocycles, the hydroxy-form predominates. 2-Hydroxypyridone (**151**) and pyridone-2-thiol (**153**)⁴¹⁷ are in equilibrium with their tautomers, 2-pyridone **152** and pyridine-2-thione **154**, respectively. In both cases, the most stable form is the hydroxy tautomer, **151** and **153**.⁴¹⁸

2. Nitroso-Oxime Tautomerism.

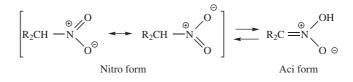
 $H_2C=N$ H_3C-N H_3C-N

The equiblirum shown for formaldhyde oxime and nitrosomethane illustrates this process.⁴¹⁹ In molecules where the products are stable, the equilibrium lies far to the right, and as a rule nitroso compounds are stable only when there is not a hydrogen.

⁴¹³Ershov, V.V.; Nikiforov, G.A. *Russ. Chem. Rev.* **1966**, *35*, 817. See also, Highet, R.J.; Chou, F.E. J. Am. Chem. Soc. **1977**, *99*, 3538.

⁴¹⁴ See, for example, Majerski, Z.; Trinajstić, N. Bull. Chem. Soc. Jpn. 1970, 43, 2648.

⁴¹⁵For a monograph on tautomerism in heterocyclic compounds, see Elguero, J.; Marzin, C.; Katritzky,


A.R.; Linda, P. *The Tautomerism of Heterocycles*, Academic Press, NY, **1976**. For reviews, see Katritzky, A.R.; Karelson, M.; Harris, P.A. *Heterocycles* **1991**, *32*, 329; Beak, P. Acc. Chem. Res. **1977**, *10*, 186; Katritzky, A.R. Chimia, **1970**, 24, 134.

⁴¹⁶Beak, P.; Fry, Jr., F.S.; Lee, J.; Steele, F. J. Am. Chem. Soc. 1976, 98, 171.

⁴¹⁷Moran, D.; Sukcharoenphon, K.; Puchta, R.; Schaefer III, H.F.; Schleyer, P.v.R.; Hoff, C.D. J. Org. Chem. 2002, 67, 9061.

⁴¹⁸Parchment, O.G.; Burton, N.A.; Hillier, I.H.; Vincent, M.A. J. Chem. Soc. Perkin Trans. 2 **1993**, 861. ⁴¹⁹Long, J.A.; Harris, N.J.; Lammertsma, K. J. Org. Chem. **2001**, 66, 6762.

3. Aliphatic Nitro Compounds Are in Equilibrium with Aci Forms.

The nitro form is much more stable than the aci form in sharp contrast to the parallel case of nitroso–oxime tautomerism, undoubtedly because the nitro form has resonance not found in the nitroso case. Aci forms of nitro compounds are also called nitronic acids and azinic acids.

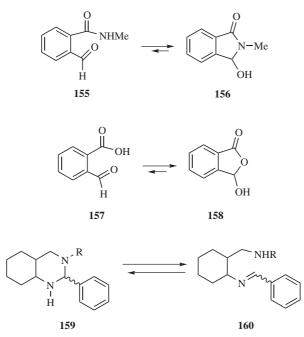
4. *Imine–Enamine Tautomerism*.⁴²⁰

R₂CH—CR=NR Imine R₂C=CR—NHR Enamine

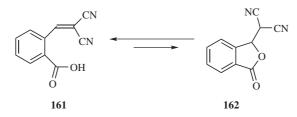
Enamines are normally stable only when there is no hydrogen on the nitrogen $(R_2C=CR-NR_2)$. Otherwise, the imine form predominates.⁴²¹ The energy of various imine–enamine tautomers has been calculated.⁴²² In the case of 6-aminofulvene-1-aldimines, tautomerism was observed in the solid state, as well as in solution.⁴²³

5. *Ring-Chain Tautomerism*. Ring-chain tautomerism⁴²⁴ occurs in sugars (aldehyde vs. the pyranose or furanose structures), and in γ-oxocarboxylic acids.⁴²⁵ In benzamide carboxaldehyde, **156**, whose ring-chain tautomer is **155**, the equilibrium favors the cyclic form (**156**).⁴²⁶ Similarly, benzoic acid 2-carboxyaldehyde (**157**) exists largely as the cyclic form (**158**).⁴²⁷ In these latter cases, and in many others, this tautomerism influences chemical reactivity. Conversion of **157** to an ester, for example, is difficult since most standard methods lead to the OR derivative of **158** rather than the ester of **157**. Ring-chain tautomerism also occurs in spriooxathianes,⁴²⁸ and in

- 425 Fabian, W.M.F.; Bowden, K. Eur. J. Org. Chem. 2001, 303.
- 426 Bowden, K.; Hiscocks, S.P.; Perjéssy, A. J. Chem. Soc. Perkin Trans. 2 1998, 291.
- ⁴²⁷Ring chain tautomer of benzoic acid 2-carboxaldehdye.
- ⁴²⁸Terec, A.; Grosu, I.; Muntean, L.; Toupet, L.; Plé, G.; Socaci, C.; Mager, S. Tetrahedron 2001, 57, 8751; Muntean, L.; Grosu, I.; Mager, S.; Plé, G.; Balog, M. Tetrahedron Lett. 2000, 41, 1967.


⁴²⁰For reviews, see Shainyan, B.A.; Mirskova, A.N. *Russ. Chem. Rev.* **1979**, 48, 107; Mamaev, V.P.; Lapachev, V.V. *Sov. Sci. Rev. Sect. B.* **1985**, 7, 1. The second review also includes other closely related types of tautomerization.

 ⁴²¹For examples of the isolation of primary and secondary enamines, see Shin, C.; Masaki, M.; Ohta, M.
Bull. Chem. Soc. Jpn. 1971, 44, 1657; de Jeso, B.; Pommier, J. J. Chem. Soc. Chem. Commun. 1977, 565.
⁴²²Lammertsma, K.; Prasad, B.V. J. Am. Chem. Soc. 1994, 116, 642.


⁴²³Sanz, D.; Perez-Torralba, M.; Alarcon, S.H.; Claramunt, R.M.; Foces-Foces, C.; Elguero, J. J. Org. Chem. 2002, 67, 1462.

⁴²⁴For a monograph, see Valters, R.E.; Flitsch, W. Ring-Chain Tautomerism, Plenum, NY, **1985**. Forreviews, see Valters, R.E. Russ. Chem. Rev. **1973**, 42, 464; **1974**, 43, 665; Escale, R.; Verducci, J. Bull. Soc. Chim. Fr., **1974**, 1203.

decahydroquinazolines, such as 159 and 160, 429 as well as other 1,3-hetero-cycles. 430

There are many other highly specialized cases of proton-shift tautomerism, including an internal Michael reaction (see **15-24**) in which 2-(2,2-dicyano-1-methylethenyl)benzoic acid (**161**) exists largely in the open chain form rather an its tautomer (**162**) in the solid state, but in solution there is an increasing amount of **162** as the solvent becomes more polar.⁴³¹

Valence Tautomerism

This type of tautomerism is discussed on p. 105.

429 Lazar, L.; Goblyos, A.; Martinek, T.A.; Fulop, F. J. Org. Chem. 2002, 67, 4734.

430 Lázár, L.; Fülöp, F. Eur. J. Org. Chem. 2003, 3025.

⁴³¹Kolsaker, P.; Arukwe, J.; Barcóczy, J.; Wiberg, A.; Fagerli, A.K. Acta Chem. Scand. B 1998, 52, 490.