
CHAPTER 

9 
THE QUADRATIC RECIPROCITY LAW 

The moving power of mathematical invention is not reasoning but imagination. 
A. DEMORGAN 

9.1 EULER'S CRITERION 

As the heading suggests, the present chapter has as its goal another major contribu­
tion of Gauss: the Quadratic Reciprocity Law. For those who consider the theory of 
numbers "the Queen of Mathematics," this is one of the jewels in her crown. The 
intrinsic beauty of the Quadratic Reciprocity Law has long exerted a strange fasci­
nation for mathematicians. Since Gauss' time, over a hundred proofs of it, all more 
or less different, have been published (in fact, Gauss himself eventually devised 
seven). Among the eminent mathematicians of the 19th century who contributed 
their proofs appear the names of Cauchy, Jacobi, Dirichlet, Eisenstein, Kronecker, 
and Dedekind. 

Roughly speaking, the Quadratic Reciprocity Law deals with the solvability of 
quadratic congruences. Therefore, it seems appropriate to begin by considering the 
congruence 

ax2 + bx + c = 0 (mod p) (1) 

where pis an odd prime and a ¢. 0 (mod p ); that is, gcd(a, p) = 1. The supposition 
that p is an odd prime implies that gcd( 4a , p) = 1. Thus, the quadratic congruence 
in Eq. (1) is equivalent to 

4a(ax2 + bx +c)= 0 (mod p) 
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By using the identity 

4a(ax 2 + bx +c)= (2ax + b)2 - (b2 - 4ac) 

the last-written quadratic congruence may be expressed as 

(2ax + b)2 = (b2 - 4ac) (mod p) 

Now put y = 2ax +band d = b2 - 4ac to get 

l=d(modp) (2) 

If x = x0 (mod p) is a solution of the quadratic congruence in Eq. (1 ), then the integer 
y = 2ax0 + b (mod p) satisfies the quadratic congruence in Eq. (2). Conversely, if 
y = y0 (mod p) is a solution of the quadratic congruence in Eq. (2), then 2ax = 
y0 - b (mod p) can be solved to obtain a solution to Eq. (1). 

Thus, the problem of finding a solution to the quadratic congruence in Eq. (1) 
is equivalent to that of finding a solution to a linear congruence and a quadratic 
congruence of the form 

x 2 =a(modp) (3) 

If p I a, then the quadratic congruence in Eq. (3) has x = 0 (mod p) as its only 
solution. To avoid trivialities, let us agree to assume hereafter that p )' a. 

Granting this, whenever x2 = a (mod p) admits a solution x = x0 , there is also 
a second solution x = p - xo. This second solution is not congruent to the first. 
For xo = p- xo (mod p) implies that 2xo = 0 (mod p), or xo = 0 (mod p), which 
is impossible. By Lagrange's theorem, these two solutions exhaust the incongruent 
solutions of x2 = a (mod p ). In short: x2 = a (mod p) has exactly two solutions or 
no solutions. 

A simple numerical example of what we have just said is provided by the 
quadratic congruence 

5x2 - 6x + 2 = 0 (mod 13) 

To obtain the solution, we replace this congruence by the simpler one 

l = 9 (mod 13) 

with solutions y = 3, 10 (mod 13). Next, solve the linear congruences 

lOx = 9 (mod 13) lOx = 16 (mod 13) 

It is not difficult to see that x = 10, 12 (mod 13) satisfy these equations and, by our 
previous remarks, also the original quadratic congruence. 

The major effort in this presentation is directed toward providing a test for the 
existence of solutions of the quadratic congruence 

x 2 =a (mod p) gcd(a, p) = 1 (4) 

To put it differently, we wish to identify those integers a that are perfect squares 
modulo p. 

Some additional terminology will help us to discuss this situation concisely. 
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Definition 9.1. Let p be an odd prime and gcd(a , p) = 1. If the quadratic congruence 
x 2 =a (mod p) has a solution, then a is said to be a quadratic residue of p. Otherwise, 
a is called a quadratic nonresidue of p. 

The point to bear in mind is that if a = b (mod p ), then a is a quadratic residue 
of p if and only if b is a quadratic residue of p. Thus, we only need to determine 
the quadratic character of those positive integers less than p to ascertain that of any 
integer. 

Example 9.1. Consider the case of the prime p = 13. To find out how many of the 
integers 1, 2, 3, ... , 12 are quadratic residues of 13, we must know which of the 
congruences 

x 2 = a (mod 13) 

are solvable when a runs through the set {1, 2, ... , 12}. Modulo 13, the squares ofthe 
integers 1, 2, 3, ... , 12 are 

12 = 122 = 1 

22 = 112 = 4 

32 = 102 = 9 
42 = 92 =3 
52= 82 = 12 
62 = 72 = 10 

Consequently, the quadratic residues of 13 are 1, 3, 4, 9, 10, 12, and the nonresidues 
are 2, 5, 6, 7, 8, 11. Observe that the integers between 1 and 12 are divided equally 
among the quadratic residues and nonresidues; this is typical of the general situation. 

For p = 13 there are two pairs of consecutive quadratic residues, the pairs 3, 4 
and 9, 10. It can be shown that for any odd prime p there are ~(p- 4- (-1)<p-lll2) 
consecutive pairs. 

Euler devised a simple criterion for deciding whether an integer a is a quadratic 
residue of a given prime p. 

Theorem 9.1 Euler's criterion. Let p be an odd prime and gcd(a , p) = 1. Then a 
is a quadratic residue of p if and only if a<p-l)/2 = 1 (mod p). 

Proof. Suppose that a is a quadratic residue of p, so that x 2 = a (mod p) admits a so­
lution, call it x1. Because gcd(a , p) = 1, evidently gcd(x1 , p) = 1. We may therefore 
appeal to Fermat's theorem to obtain 

a<p-l)/2 = (xf}<p-l)/2 = xf-1 = 1 (mod p) 

For the opposite direction, assume that the congruence a<p-l)/2 = 1 (mod p) 
holds, and let r be a primitive root of p. Then a = rk (mod p) for some integer k, with 
1 :::; k :::; p - 1. It follows that 

rk(p-1)/2 = a<p-1)/2 = 1 (mod p) 
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By Theorem 8.1, the order of r (namely, p- 1) must divide the exponent k(p- 1)/2. 
The implication is that k is an even integer, say k = 2j. Hence, 

(rj)2 = r 2j = rk =a (mod p) 

making the integer rj a solution of the congruence x 2 = a (mod p ). This proves that 
a is a quadratic residue of the prime p. 

Now if p (as always) is an odd prime and gcd(a, p) = 1, then 

(a<P-1ll2 - l)(a<P-1ll2 + 1) = aP-1 - 1 = 0 (mod p) 

the last congruence being justified by Fermat's theorem. Hence, either 

a<P-1)12 = 1 (mod p) or a<P-1)12 = -1 (mod p) 

but not both. For, if both congruences held simultaneously, then we would have 
1 = -1 (mod p ), or equivalently, p I 2, which conflicts with our hypothesis. Because 
a quadratic nonresidue of p does not satisfy a<P-1l12 = 1 (mod p ), it must therefore 
satisfy a<P-1)12 = -1 (mod p ). This observation provides an alternate formulation 
of Euler's criterion: the integer a is a quadratic nonresidue of the prime p if and only 
if a<P-1)12 = -1 (mod p). 

Putting the various pieces together, we come up with the following corollary. 

Corollary. Let p be an odd prime and gcd(a , p) = 1. Then a is a quadratic residue 
or nonresidue of p according to whether 

a<P-1)12 = 1 (mod p) or a<P-1)12 = -1 (mod p) 

Example 9.2. In the case where p = 13, we find that 

2(13- 1)/2 = 26 = 64 = 12 = -1 (mod 13) 

Thus, by virtue of the last corollary, the integer 2 is a quadratic nonresidue of 13. 
Because 

3<13-012 = 36 = (27)2 = 12 = 1 (mod 13) 

the same result indicates that 3 is a quadratic residue of 13 and so the congruence 
x 2 = 3 (mod 13) is solvable; in fact, its two incongruent solutions are x = 4 and 
9 (mod 13). 

There is an alternative proof of Euler's criterion (due to Dirichlet) that is longer, 
but perhaps more illuminating. The reasoning proceeds as follows. Let a be a 
quadratic nonresidue of p and let c be any one of the integers 1, 2, ... , p- 1. 
By the theory of linear congruences, there exists a solution c' of ex = a (mod p ), 
with c' also in the set {1, 2, ... , p- 1 }. Note that c' # c; otherwise we would have 
c2 = a (mod p ), which contradicts what we assumed. Thus, the integers between 1 
and p- 1 can be divided into (p- 1)/2 pairs, c, c', where cc' =a (mod p). This 
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leads to (p - 1) /2 congruences, 

c,c~ =a (mod p) 

c2c~ =a (mod p) 

C(p-l)/2c(p-l)/2 =a (mod p) 

Multiplying them together and observing that the product 
I I I 

c,c1c2c2 · · · C(p-1)/2c(p-l)/2 

is simply a rearrangement of 1 · 2 · 3 · · · (p - 1), we obtain 

(p- 1)! = a<p-l)/2 (mod p) 

At this point, Wilson's theorem enters the picture; for, (p - 1)! = -1 (mod p ), so 
that 

a<p-l)/2 = -1 (mod p) 

which is Euler's criterion when a is a quadratic nonresidue of p. 
We next examine the case in which a is a quadratic residue of p. In this setting 

the congruence x 2 = a (mod p) admits two solutions x = x1 and x = p - x1, for 
some x1 satisfying 1 ~ x1 ~ p - 1. If x1 and p - x1 are removed from the set 
{1, 2, ... , p- 1}, then the remaining p- 3 integers can be grouped into pairs c, c1 

(where c =f=. c1) such that cc1 =a (mod p). To these (p- 3)/2 congruences, add the 
congruence 

x1(p- x1) = -x~ =-a (mod p) 

Upon taking the product of all the congruences involved, we arrive at the relation 

(p- 1)! = -a<p-!)/2 (mod p) 

Wilson's theorem plays its role once again to produce 

a<p-l)/2 = 1 (mod p) 

Summing up, we have shown that a<p-l)/2 = 1 (mod p) or a<p-l)/2 = -1 (mod p) 
according to whether a is a quadratic residue or nonresidue of p. 

Euler's criterion is not offered as a practical test for determining whether a given 
integer is or is not a quadratic residue; the calculations involved are too cumbersome 
unless the modulus is small. But as a crisp criterion, easily worked with for theoretic 
purposes, it leaves little to be desired. A more effective method of computation is 
embodied in the Quadratic Reciprocity Law, which we shall prove later in the chapter. 

PROBLEMS 9.1 

1. Solve the following quadratic congruences: 
(a) x 2 + 7x + 10 = 0 (mod 11). 
(b) 3x2 + 9x + 7 = 0 (mod 13). 
(c) 5x2 + 6x + 1 = 0 (mod 23). 
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2. Prove that the quadratic congruence 6x2 + 5x + 1 = 0 (mod p) has a solution for every 
prime p, even though the equation 6x2 + 5x + 1 = 0 has no solution in the integers. 

3. (a) For an odd prime p, prove that the quadratic residues of pare congruent modulo p 
to the integers 

2 2 2 p - 1 ( )
2 

1,2,3, ... , -2-

(b) Verify that the quadratic residues of 17 are 1, 2, 4, 8, 9, 13, 15, 16. 
4. Show that 3 is a quadratic residue of 23, but a nonresidue of 31. 
5. Given that a is a quadratic residue of the odd prime p, prove the following: 

(a) a is not a primitive root of p. 
(b) The integer p - a is a quadratic residue or nonresidue of p according as p = 1 

(mod 4) or p = 3 (mod 4). 
(c) If p = 3 (mod 4), then x = ±a<p+I)/4 (mod p) are the solutions of the congruence 

x 2 =a (mod p). 
6. Let p be an odd prime and gcd(a , p) = 1. Establish that the quadratic congruence 

ax2 + bx + c = 0 (mod p) is solvable if and only if b2 - 4ac is either zero or a quadratic 
residue of p. 

7. If p = 2k + 1 is prime, verify that every quadratic nonresidue of p is a primitive root 
of p. 
[Hint: Apply Euler's criterion.] 

8. Assume that the integer r is a primitive root of the prime p, where p = 1 (mod 8). 
(a) Show that the solutions of the quadratic congruence x 2 = 2 (mod p) are given by 

x = ±(r1(p-I)f& + r<p-l)f&) (mod p) 

[Hint: First confirm thatr3<p-Il/2 = -1 (mod p).] 
(b) Use part (a) to find all solutions to the two congruences x 2 = 2 (mod 17) and x 2 = 2 

(mod 41). 
9. (a) If ab = r (mod p ), where r is a quadratic residue of the odd prime p, prove that a 

and bare both quadratic residues of p or both nonresidues of p. 
(b) If a and bare both quadratic residues of the odd prime p or both nonresidues of p, 

show that the congruence ax2 = b (mod p) has a solution. 
[Hint: Multiply the given congruence by a' where a a' = 1 (mod p ).] 

10. Let p be an odd prime and gcd(a , p) = gcd(b , p) = 1. Prove that either all three of the 
quadratic congruences 

x 2 =a (mod p) x 2 = b (mod p) x 2 = ab (mod p) 

are solvable or exactly one of them admits a solution. 
11. (a) Knowing that 2 is a primitive root of 19, find all the quadratic residues of 19. 

[Hint: See the proof of Theorem 9 .1.] 
(b) Find the quadratic residues of 29 and 31. 

12. If n > 2 and gcd(a, n) = 1, then a is called a quadratic residue of n whenever there 
exists an integer x such that x 2 =a (mod n). Prove that if a is a quadratic residue of 
n > 2, then atP(n)/2 = 1 (mod n). 

13. Show that the result of the previous problem does not provide a sufficient condition for 
the existence of a quadratic residue of n; in other words, find relatively prime integers 
a and n, with atP<n)/2 = 1 (mod n), for which the congruence x 2 =a (mod n) is not 
solvable. 
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9.2 THE LEGENDRE SYMBOL AND ITS PROPERTIES 

Euler's studies on quadratic residues were further developed by the French mathe­
matician Adrien Marie Legendre (1752-1833). Legendre's memoir "Recherches 
d' Analyse Indeterminee" (1785) contains an account of the Quadratic Reci­
procity Law and its many applications, a sketch of a theory of the representa­
tion of an integer as the sum of three squares, and the statement of a theorem 
that was later to become famous: Every arithmetic progression ax+ b, where 
gcd(a, b)= 1, contains an infinite number of primes. The topics covered in 
"Recherches" were taken up in a more thorough and systematic fashion in his 
Essai sur la Theorie des Nombres, which appeared in 1798. This represented 
the first "modern" treatise devoted exclusively to number theory, its precursors 
being translations or commentaries on Diophantus. Legendre's Essai was subse­
quently expanded into his Theorie des Nombres. The results of his later research 
papers, inspired to a large extent by Gauss, were included in 1830 in a two­
volume third edition of the Theorie des Nombres. This remained, together with the 
Disquisitiones Arithmeticae of Gauss, a standard work on the subject for many years. 
Although Legendre made no great innovations in number theory, he raised fruit­
ful questions that provided subjects of investigation for the mathematicians of the 
19th century. 

Before leaving Legendre's mathematical contributions, we should mention that 
he is also known for his work on elliptic integrals and for his Elements de Geometrie 
(1794). In this last book, he attempted a pedagogical improvement of Euclid's Ele­
ments by rearranging and simplifying many of the proofs without lessening the rigor 
of the ancient treatment. The result was so favorably received that it became one of 
the most successful textbooks ever written, dominating instruction in geometry for 
over a century through its numerous editions and translations. An English translation 
was made in 1824 by the famous Scottish essayist and historian Thomas Carlyle, 
who was in early life a teacher of mathematics; Carlyle's translation ran through 
33 American editions, the last not appearing until1890. In fact, Legendre's revision 
was used at Yale University as late as 1885, when Euclid's Elements was finally 
abandoned as a text. 

Our future efforts will be greatly simplified by the use of the symbol (a I p ); this 
notation was introduced by Legendre in his Essai and is called, naturally enough, 
the Legendre symbol. 

Definition 9.2. Let p be an odd prime and let gcd(a , p) = 1. The Legendre symbol 
(a/ p) is defined by 

(ajp)={ 1 
-1 

if a is a quadratic residue of p 

if a is a quadratic nonresidue of p 

For the want of better terminology, we shall refer to a as the numerator and p 
as the denominator of the symbol (a I p ). Another standard notation for the Legendre 
symbol is(;), or (a I p). 
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Example 9.3. Let us look at the prime p = 13, in particular. Using the Legendre 
symbol, the results of an earlier example may be expressed as 

(1/13) = (3/13) = (4/13) = (9/13) = (10/13) = (12/13) = 1 

and 

(2/13) = (5/13) = (6/13) = (7/13) = (8/13) = (11/13) = -1 

Remark. For p 1 a, we have purposely left the symbol (a/ p) undefined. Some authors 
find it convenient to extend Legendre's definition to this case by setting (ajp) = 0. 
One advantage of this is that the number of solutions of x 2 = a (mod p) can then be 
given by the simple formula 1 + (a I p ). 

The next theorem establishes certain elementary facts concerning the Legendre 
symbol. 

Theorem 9.2. Let p be an odd prime and let a and b be integers that are relatively 
prime top. Then the Legendre symbol has the following properties: 

(a) If a= b (mod p), then (ajp) = (bjp). 
(b) (a 2 jp) = 1. 
(c) (ajp) = a<P-1>12 (mod p). 
(d) (abjp) = (ajp)(bjp). 
(e) (1/p) = 1 and (-1/p) = (-l)<p-1)/2. 

Proof. If a = b (mod p ), then the two congruences x 2 = a (mod p) and x 2 = b 
(mod p) have exactly the same solutions, if any at all. Thus, x 2 = a (mod p) and 
x 2 = b (mod p) are both solvable, or neither one has a solution. This is reflected in the 
statement(a/p) = (bjp). 

Regarding property (b), observe that the integer a trivially satisfies the congruence 
x 2 = a2 (mod p); hence, (a 2 jp) = 1. Property (c) is just the corollary to Theorem 9.1 
rephrased in terms of the Legendre symbol. We use (c) to establish property (d): 

(ab I p) = (ab )(p-1)/2 = a<P-1)/2 b(p-1)/2 = (a I p )(b I p )(mod p) 

Now the Legendre symbol assumes only the values 1 or -1. If (ab I p) =I= (a I p )(b I p ), 
we would have 1 = -1 (mod p) or 2 = 0 (mod p ); this cannot occur, because p > 2. 
It follows that 

(abjp) = (ajp)(bjp) 

Finally, we observe that the first equality in property (e) is a special case of property 
(b), whereas the second one is obtained from property (c) upon setting a = -1. Because 
the quantities ( -11 p) and ( -1 )<P-1>12 are either 1 or -1, the resulting congruence 

(-1/p) = (-l)<P-1)/2 (mod p) 

implies that ( -1/ p) = ( -1)<p-1)/2. 

From parts (b) and (d) of Theorem 9 .2, we may also abstract the relation 

(f) (ab2 jp) = (ajp)(b2 jp) = (ajp) 
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In other words, a square factor that is relatively prime to p can be deleted from the 
numerator of the Legendre symbol without affecting its value. 

Because (p - 1) /2 is even for a prime p of the form 4k + 1 and odd for p 
of the form 4k + 3, the equation ( -1 j p) = ( -1 )<p-l)/2 permits us to add a small 
supplemental corollary to Theorem 9.2. 

Corollary. If p is an odd prime, then 

{ 
1 if p = 1 (mod 4) 

(-1/p) = 
-1 if p = 3 (mod4) 

This corollary may be viewed as asserting that the quadratic congruence x 2 = 
-1 (mod p) has a solution for an odd prime p if and only if p is ofthe form 4k + 1. 
The result is not new, of course; we have merely provided the reader with a different 
path to Theorem 5.5. 

Example 9.4. Let us ascertain whether the congruence x 2 = -46 (mod 17) is solvable. 
This can be done by evaluating the Legendre symbol ( -46/17). We first appeal to 
properties (d) and (e) of Theorem 9.2 to write 

( -46/17) = ( -1/17)(46/17) = (46/17) 

Because 46 = 12 (mod 17), it follows that 

(46/17) = (12/17) 

Now property (f) gives 

(12/17) = (3. 22/17) = (3/17) 

But 

(3/17) = 3(!?-I)/2 = 38 = (81)2 = ( -4)2 = -1 (mod 17) 

where we have made appropriate use of property (c) of Theorem 9.2; hence, (3/17) = 
-1. Inasmuch as ( -46/17) = -1, the quadratic congruence x 2 = -46 (mod 17) 
admits no solution. 

The corollary to Theorem 9.2 lends itself to an application concerning the dis­
tribution of primes. 

Theorem 9.3. There are infinitely many primes of the form 4k + 1. 

Proof. Suppose that there are finitely many such primes; let us call them p 1, P2, ... , Pn 
and consider the integer 

N = (2PIP2 · · · Pn)2 + 1 

Clearly N is odd, so that there exists some odd prime p with p I N. To put it another 
way, 
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or, if we prefer to phrase this in terms of the Legendre symbol, ( -1 I p) = 1. But the 
relation ( -1 I p) = 1 holds only if p is of the form 4k + 1. Hence, p is one of the primes 
Pi· implying that Pi divides N- (2P1P2 · · · Pn)2, or Pi 11, which is a contradiction. 
The conclusion: There must exist infinitely many primes of the form 4k + 1. 

We dig deeper into the properties of quadratic residues with Theorem 9.4. 

Theorem 9.4. If p is an odd prime, then 

p-1 

.L)afp) = 0 
a=1 

Hence, there are precisely (p - 1)/2 quadratic residues and (p - 1)/2 quadratic non­
residues of p. 

Proof. Let r be a primitive root of p. We know that, modulo p, the powers r, 
r 2 , ... , rP-1 are just a permutation of the integers 1, 2, ... , p - 1. Thus, for any 
a lying between 1 and p - 1, inclusive, there exists a unique positive integer k 
(1 :::: k:::: p- 1), such that a= rk (mod p). By appropriate use of Euler's criterion, 
we have 

(a/ p) = (rk / p) = (rk)(p-1)/2 = (r(p-1)f2l = ( -1l (mod p) (1) 

where, because r is a primitive root of p, r<P-1ll2 = -1 (mod p). But (ajp) and ( -1)k 
are equal to either 1 or -1, so that equality holds in Eq. (1). Now add up the Legendre 
symbols in question to obtain 

p-1 p-1 

i)a/p) = L)-1)k = 0 
a=1 k=1 

which is the desired conclusion. 

The proof of Theorem 9.4 serves to bring out the following point, which we 
record as a corollary. 

Corollary. The quadratic residues of an odd prime p are congruent modulo p to the 
even powers of a primitive root r of p; the quadratic nonresidues are congruent to the 
odd powers of r. 

For an illustration of the idea just introduced, we again fall back on the prime 
p = 13. Because 2 is a primitive root of 13, the quadratic residues of 13 are given 
by the even powers of 2, namely, 

22 =4 

24 = 3 

26 = 12 

28 = 9 

210 = 10 

212 = 1 
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all congruences being modulo 13. Similarly, the nonresidues occur as the odd powers 
of2: 

21 =2 

23 = 8 

25 = 6 

27 = 11 

29 = 5 

211 = 7 

Most proofs of the Quadratic Reciprocity Law, and ours as well, rest ultimately 
upon what is known as Gauss' lemma. Although this lemma gives the quadratic 
character of an integer, it is more useful from a theoretic point of view than as a 
computational device. We state and prove it below. 

Theorem 9.5 Gauss' lemma. Let p be an odd prime and let gcd(a , p) = 1. If n 
denotes the number of integers in the set 

S = {a, 2a, 3a, ... , ( p ; 1) a} 

whose remainders upon division by p exceed p /2, then 

(afp) = (-1)n 

Proof. Because gcd(a, p) = 1, none of the (p- 1)/2 integers inS is congruent to zero 
and no two are congruent to each other modulo p. Let r1 , ••. , r m be those remainders 
upon division by p such that 0 < r; < p /2, and let s1, ... , sn be those remainders such 
that p > s; > p/2. Then m + n = (p- 1)/2, and the integers 

p - SJ, ... , p - Sn 

are all positive and less than p /2. 
To prove that these integers are all distinct, it suffices to show that no p - s; is 

equal to any r j. Assume to the contrary that 

for some choice of i and j. Then there exist integers u and v, with 1 ::::: u, v ::::: (p - 1) /2, 
satisfying s; = ua (mod p) and rj = va (mod p). Hence, 

(u + v)a = s; + rj = p = 0 (mod p) 

which says that u + v = 0 (mod p ). But the latter congruence cannot take place, 
because 1 < u + v ::::: p - 1. 

The point we wish to bring out is that the (p - 1) /2 numbers 

p - St, ... , p - Sn 

are simply the integers 1, 2, ... , (p- 1)/2, not necessarily in order of appearance. 
Thus, their product is [(p - 1)/2] !: 

( p; 1} = r1 · · · rm(P- SJ) · · · (p- sn) 

= r,· · ·rm(-st)· · ·(-sn) (modp) 

= (-l)nr, · · · TmSJ · · ·Sn (mod p) 
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But we know that r 1, ... , rm, s1, ... , Sn are congruent modulo p to a, 2a, ... , 
[(p - l)/2]a, in some order, so that 

( p-I) (p-I) - 2- ! =(-Ita· 2a · · · - 2- a (mod p) 

= (-l)na(p-l)/2 ( p ~ 1} (mod p) 

Because [(p- I)/2]! is relatively prime top, it may be canceled from both sides of 
this congruence to give 

I= (-lta<p-l)/2 (mod p) 

or, upon multiplying by ( -l)n, 

a<p-l)/2 = (-l)n (modp) 

Use of Euler's criterion now completes the argument: 

(ajp) = a<p-l)/2 = (-I)n (mod p) 

which implies that 

(ajp) =(-It 

By way of illustration, let p = 13 and a = 5. Then (p - 1) /2 = 6, so that 

s = {5, 10, 15, 20, 25, 30} 

Modulo 13, the members of S are the same as the integers 

5, 10, 2, 7, 12,4 

Three ofthese are greater than 13/2; hence, n = 3, and Theorem 9.5 says that 

(5/13) = (-1)3 = -1 

Gauss' lemma allows us to proceed to a variety of interesting results. For one 
thing, it provides a means for determining which primes have 2 as a quadratic residue. 

Theorem 9.6. If p is an odd prime, then 

{ 
I if p = I (mod 8) or p = 7 (mod 8) 

(2/p)= 
-I if p = 3 (mod 8) or p = 5 (mod 8) 

Proof. According to Gauss' lemma, (2/ p) = ( -l)n, where n is the number of integers 
in the set 

s = {I . 2, 2 . 2, 3 . 2, ... , ( p ~ 1) . 2} 

which, upon division by p, have remainders greater than p/2. The members of S are 
all less than p, so that it suffices to count the number that exceed pj2. For I ::S k ::S 
(p - I) /2, we have 2k < p /2 if and only if k < pI 4. If [] denotes the greatest integer 
function, then there are [p/4] integers inS less than pj2; hence, 

n = p ~I - [~] 
is the number of integers that are greater than p /2. 
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Now we have four possibilities; for, any odd prime has one of the forms 8k + 1, 
8k + 3, 8k + 5, or 8k + 7. A simple calculation shows that 

if p = 8k + 1, then n = 4k- [ 2k + ~ J = 4k- 2k = 2k 

if p = 8k + 3, then n = 4k + 1 - [ 2k + ~ J = 4k + 1 - 2k = 2k + 1 

if p = 8k + 5, then n = 4k + 2 - [ 2k + 1 + ~ J 
= 4k + 2- (2k + 1) = 2k + 1 

if p = 8k + 7, then n = 4k + 3 - [ 2k + 1 + ~ J 
= 4k + 3 - (2k + 1) = 2k + 2 

Thus, when p is of the form 8k + 1 or 8k + 7, n is even and (2/ p) = 1; on the 
other hand, when p assumes the form 8k + 3 or 8k + 5, n is odd and (2/ p) = -1. 

Notice that if the prime p is of the form 8k ± 1 (equivalently, p = 1 (mod 8) or 
p = 7 (mod 8)), then 

(8k ± 1)2 - 1 

8 
64k2 ± 16k = 8k2 ± 2k 

8 

which is an even integer; in this situation, ( -l)<P2-l)/S = 1 = (2/ p ). On the other 
hand, if pis of the form 8k ± 3 (equivalently, p = 3 (mod 8) or p = 5 (mod 8)), 
then 

p 2 - 1 (8k ± 3)2 - 1 64k2 ± 48k + 8 = 8k2 ± 6k + 1 
8 8 8 

which is odd; here, we have ( -l)<P2-l)/S = -1 = (2/ p ). These observations are 
incorporated in the statement of the following corollary to Theorem 9.6. 

Corollary. If p is an odd prime, then 

(2/ p) = ( -l)(p2-l)/8 

It is time for another look at primitive roots. As we have remarked, there is no 
general technique for obtaining a primitive root of an odd prime p; the reader might, 
however, find the next theorem useful on occasion. 

Theorem 9.7. If p and 2p + 1 are both odd primes, then the integer ( -l)<P-l)/22 is a 
primitive root of 2p + 1. 

Proof. For ease of discussion, let us put q = 2p + 1. We distinguish two cases: p = 
1 (mod 4) and p = 3 (mod 4). 
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If p = 1 (mod 4), then (-1)<P- 1)f22 = 2. Because ¢(q) = q- 1 = 2p, the order of 
2 modulo q is one of the numbers 1, 2, p, or 2p. Taking note of property (c) of 
Theorem 9.2, we have 

(2/q) := 2(q-1)/2 = 2P (mod q) 

But, in the present setting, q = 3 (mod 8); whence, the Legendre symbol (2/ q) = -1. 
It follows that 2P = -1 (mod q), and therefore 2 cannot have order p modulo q. 
The order of 2 being neither 1, 2, (22 = 1 (mod q) implies that q 13, which is an 
impossibility) nor p, we are forced to conclude that the order of 2 modulo q is 2p. 
This makes 2 a primitive root of q. 

We now deal with the case p = 3 (mod 4). This time, ( -1)<P-1)f22 = -2 and 

(-2)P = (-2/q) = (-1/q)(2/q) (mod q) 

Because q = 7 (mod 8), the corollary to Theorem 9.2 asserts that (-1/q) = -1, 
whereas once again we have (2/ q) = 1. This leads to the congruence (-2)P = -1 
(mod q ). From here on, the argument duplicates that of the last paragraph. Without 
analyzing further, we announce the decision: -2 is a primitive root of the prime q. 

Theorem 9.7 indicates, for example, that the primes 11, 59, 107, and 179 have 
2 as a primitive root. Likewise, the integer -2 serves as a primitive root for 7, 23, 
47, and 167. 

Before retiring from the field, we should mention another result of the same 
character: if both p and 4 p + 1 are primes, then 2 is a primitive root of 4 p + 1. 
Thus, to the list of prime numbers having 2 for a primitive root, we could add, say, 
13, 29, 53, and 173. 

An odd prime p such that 2 p + 1 is also a prime is called a Germain prime, after 
the French number theorist Sophie Germain (1776-1831). An unresolved problem 
is to determine whether there exist infinitely many Germain primes. The largest such 
known today is p = 2540041185 . 2114729 - 1, which has 34547 digits. 

There is an attractive proof of the infinitude of primes of the form 8k - 1 that 
can be based on Theorem 9.6. 

Theorem 9.8. There are infinitely many primes of the form 8k - 1. 

Proof. As usual, suppose that there are only a finite number of such primes. Let these 
be p1, p2, ... , Pn and consider the integer 

N = (4P1P2 · · · Pnf - 2 

There exists at least one odd prime divisor p of N, so that 

(4P1P2 · · · Pn)2 = 2 (mod p) 

or (2/ p) = 1. In view of Theorem 9.6, p = ± 1 (mod 8). If all the odd prime divisors 
of N were of the form 8k + 1, then N would be of the form 8a + 1; this is clearly 
impossible, because N is of the form 16a - 2. Thus, N must have a prime divisor q of 
the form 8k- 1. But q IN, and q I (4p1p2 · · • Pn)2 leads to the contradiction that q 12. 

The next result, which allows us to effect the passage from Gauss' lemma to the 
Quadratic Reciprocity Law (Theorem 9.9), has some independent interest. 
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Lemma. If pis an odd prime and a an odd integer, with gcd(a, p) = 1, then 

"<p-IJt2[k I l (ajp) = (-l)L-k~I a P 

Proof. We shall employ the same notation as in the proof of Gauss' lemma. Consider 
the set of integers 

S = {a, 2a, ... , ( p ~ 1) a} 
Divide each of these multiples of a by p to obtain 

Then kajp = qk + tkfp, so that [kajp] = qk. Thus, for 1:::: k:::: (p- 1)/2, we may 
write ka in the form 

ka = [~] p + tk (1) 

If the remainder tk < p j2, then it is one of the integers r1 , ... , r m; on the other hand, 
if tk > p j2, then it is one of the integers s1, ... , sn. 

Taking the sum of the (p - 1)/2 equations in Eq. (1), we get the relation 

(p-1)12 (p-1)12 [k J m n 

L ka = L _.!!:_ p + L rk + L sk 
k=1 k=1 p k=1 k=1 

(2) 

It was learned in proving Gauss' lemma that the (p- 1)/2 numbers 

p - S1, •.. , p - Sn 

are just a rearrangement of the integers 1, 2, ... , (p - 1)/2. Hence 

(3) 

Subtracting Eq. (3) from Eq. (2) gives 

(p-1)12 ((p-1)12 [k J ) n 

(a - 1) {; k = p {; ; - n + 2 {; sk (4) 

Let us use the fact that p = a = 1 (mod 2) and translate this last equation into a 
congruence modulo 2: 

(p-1)12 ((p-1)12 [ka J ) 
o. I: k=l· I: - -n 

k=1 k=1 p 
(mod 2) 

or 

(p-1)12 [k J 
n = L _.!!:_ (mod 2) 

k=1 p 

The rest follows from Gauss' lemma; for, 

as we wished to show. 

"<p-l)tz [k I l (ajp) =(-It= (-l)L-k~I a P 



184 ELEMENTARY NUMBER THEORY 

For an example of this last result, again consider p = 13 and a = 5. Because 
(p- 1)/2 = 6, it is necessary to calculate [kafp] fork= 1, ... , 6: 

[5/13] = [10/13] = 0 

[15/13] = [20/13] = [25/13] = 1 

[30/13] = 2 

By the lemma just proven, we have 

(5/13) = (-1)1+1+1+2 = (-1)5 = -1 

confirming what was earlier seen. 

PROBLEMS 9.2 

1. Find the value of the following Legendre symbols: 
(a) (19/23). 
(b) ( -23/59). 
(c) (20/31). 
(d) (18/43). 
(e) ( -72/131). 

2. Use Gauss' lemma to compute each of the Legendre symbols below (that is, in each case 
obtain the integer n for which (a/ p) = (-In: 
(a) (8/11). 
(b) (7 /13). 
(c) (5/19). 
(d) (11/23). 
(e) (6/31). 

3. For an odd prime p, prove that there are (p- 1)/2- cp(p- 1) quadratic nonresidues of 
p that are not primitive roots of p. 

4. (a) Let p be an odd prime. Show that the Diophantine equation 

x2 + py +a= 0 gcd(a, p) = 1 

has an integral solution if and only if (-a I p) = 1. 
(b) Determine whether x2 + 7y- 2 = 0 has a solution in the integers. 

5. Prove that 2 is not a primitive root of any prime of the form p = 3 · 2n + 1, except when 
p = 13. 
[Hint: Use Theorem 9.6.] 

6. (a) If pis an odd prime and gcd(ab, p) = 1, prove that at least one of a, b, or ab is a 
quadratic residue of p. 

(b) Given a prime p, show that, for some choice of n > 0, p divides 

(n2 - 2)(n2 - 3)(n2 - 6) 

7. If pis an odd prime, show that 

p-2 

L(a(a + 1)/p) = -1 
a=i 

[Hint: If a' is defined by aa' = 1 (mod p), then (a(a + 1)/ p) = ((1 +a')/ p). Note that 
1 +a' runs through a complete set of residues modulo p, except for the integer 1.] 
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8. Prove the statements below: 
(a) If p and q = 2p + 1 are both odd primes, then -4 is a primitive root of q. 
(b) If p = 1 (mod 4) is a prime, then -4 and (p- 1)/4 are both quadratic residues of p. 

9. For a prime p = 7 (mod 8), show that p 1 ip-I)/2 - 1. 
[Hint: Use Theorem 9.6.] 

10. Use Problem 9 to confirm that the numbers 2n - 1 are composite for n = 11, 23, 83, 
131,179,183,239,251. 

11. Given that p and q = 4p + 1 are both primes, prove the following: 
(a) Any quadratic nonresidue of q is either a primitive root of q or has order 4 modulo q. 

[Hint: If a is a quadratic nonresidue of q, then -1 = (afq) = a2P (mod q); hence, 
a has order 1, 2, 4, p, 2p, or 4p modulo q.] 

(b) The integer 2 is a primitive root of q; in particular, 2 is a primitive root of the primes 
13, 29, 53, and 173. 

12. If r is a primitive root of the odd prime p, prove that the product ofthe quadratic residues 
of p is congruent modulo p to r<P2 -I)/4 and the product of the nonresidues of p is 
congruent modulo p to r<P-0214. 

[Hint: Apply the corollary to Theorem 9.4.] 
13. Establish that the product of the quadratic residues of the odd prime p is congruent 

modulo p to 1 or -1 according as p = 3 (mod 4) or p = 1 (mod 4 ). 
[Hint: Use Problem 12 and the fact that r<p-I)/2 = -1 (mod p). Or, Problem 3(a) of 
Section 9.1 and the proof of Theorem 5.5.] 

14. (a) If the prime p > 3, show that p divides the sum of its quadratic residues. 
(b) If the prime p > 5, show that p divides the sum of the squares of its quadratic 

nonresidues. 
15. Prove that for any prime p > 5 there exist integers 1 .::::a, b.:::: p- 1 for which 

(a/p) =(a+ 1/p) = 1 and (b/p) = (b + 1/p) = -1 

that is, there are consecutive quadratic residues of p and consecutive nonresidues. 
16. (a) Let p be an odd prime and gcd(a, p) = gcd(k, p) = 1. Show that if the equation 

x 2 - ay2 = kp admits a solution, then (a/ p) = 1; for example, (2/7) = 1, because 
62 - 2. 22 = 4. 7. 
[Hint: If xo, Yo satisfy the given equation, then (x0yg-2)2 =a (mod p).] 

(b) By considering the equation x 2 + 5 y2 = 7, demonstrate that the converse of the result 
in part (a) need not hold. 

(c) Show that, for any prime p = ±3 (mod8), theequationx2 - 2y2 = phasnosolution. 
17. Prove that the odd prime divisors p of the integers 9n + 1 are of the form p = 1 (mod 4). 
18. For a prime p = 1 (mod 4), verify that the sum of the quadratic residues of p is equal to 

p(p- 1)/4. 
[Hint: If a 1, ... , a, are the quadratic residues of p less than p f2, then p - a 1, ... , p - a, 
are those greater than p /2.] 

9.3 QUADRATIC RECIPROCITY 

Let p and q be distinct odd primes, so that both of the Legendre symbols (pI q) 
and (q I p) are defined. It is natural to enquire whether the value of (pI q) can be 
determined if that of (q I p) is known. To put the question more generally, is there any 
connection at all between the values of these two symbols? The basic relationship was 
conjectured experimentally by Euler in 1783 and imperfectly proved by Legendre 
two years thereafter. Using his symbol, Legendre stated this relationship in the 
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elegant form that has since become known as the Quadratic Reciprocity Law: 

e=l i::! 
(p/q)(qjp) = (-1) 2 2 

Legendre went amiss in assuming a result that is as difficult to prove as the law 
itself, namely, that for any odd prime p = 1 (mod 8), there exists another prime 
q = 3 (mod 4) for which pis a quadratic residue. Undaunted, he attempted another 
proof in his Essai sur la Theorie des Nombres (1798); this one also contained a 
gap, because Legendre took for granted that there are an infinite number of primes 
in certain arithmetical progressions (a fact eventually proved by Dirichlet in 1837, 
using in the process very subtle arguments from complex variable theory). 

At the age of 18, Gauss (in 1795), apparently unaware of the work of either 
Euler or Legendre, rediscovered this reciprocity law and, after a year's unremit­
ting labor, obtained the first complete proof. "It tortured me," says Gauss, "for the 
whole year and eluded my most strenuous efforts before, finally, I got the proof 
explained in the fourth section of the Disquisitiones Arithmeticae." In the Disqui­
sitiones Arithmeticae-which was published in 1801, although finished in 1798-
Gauss attributed the Quadratic Reciprocity Law to himself, taking the view that a 
theorem belongs to the one who gives the first rigorous demonstration. The indig­
nant Legendre was led to complain: "This excessive impudence is unbelievable in 
a man who has sufficient personal merit not to have the need of appropriating the 
discoveries of others." All discussion of priority between the two was futile; because 
each clung to the correctness of his position, neither took heed of the other. Gauss 
went on to publish five different demonstrations of what he called "the gem of higher 
arithmetic," and another was found among his papers. The version presented below, a 
variant of one of Gauss' own arguments, is due to his student, Ferdinand Eisenstein 
(1823-1852). The proof is challenging (and it would perhaps be unreasonable to 
expect an easy proof), but the underlying idea is simple enough. 

Theorem 9.9 Quadratic Reciprocity Law. If p and q are distinct odd primes, then 

2.:::!. t1. 
(p/q)(q/p) = (-1) 2 2 

Proof. Consider the rectangle in the xy coordinate plane whose vertices are (0, 0), 
(p /2, 0), (0, q /2), and (p /2, q /2). Let R denote the region within this rectangle, not 
including any of the bounding lines. The general plan of attack is to count the number 
of lattice points (that is, the points whose coordinates are integers) inside R in two 
different ways. Because p and q are both odd, the lattice points in R consist of all 
points (n, m), where 1 ::; n ::; (p - 1)/2 and 1 ::; m ::; (q - 1)/2; clearly, the number 
of such points is 

p-l q-l 

2 2 
Now the diagonal D from (0, 0) to (p/2, q /2) has the equation y = (q I p)x, or 

equivalently, py = q x. Because gcd(p , q) = 1, none of the lattice points inside R will 
lie on D. For p must divide the x coordinate of any lattice point on the line py = q x, and 
q must divide its y coordinate; there are no such points in R. Suppose that T1 denotes 
the portion of R that is below the diagonal D, and T2 the portion above. By what we 
have just seen, it suffices to count the lattice points inside each of these triangles. 
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The number of integers in the interval 0 < y < kq I p is equal to [kq I p]. Thus, 
for 1 _:::: k _:::: (p- 1)12, there are precisely [kqlp] lattice points in T1 directly above 
the point (k, 0) and below D; in other words, lying on the vertical line segment from 
(k, 0) to (k, kq I p ). It follows that the total number of lattice points contained in T1 is 

(0, 0) (k, 0) (p/2, 0) 

A similar calculation, with the roles of p and q interchanged, shows that the number 
of lattice points within T2 is 

This accounts for all of the lattice points inside R, so that 

1 1 (p-1)12 [k J (q-1)12 [ . J 
~·~= L _!j_ + L JP 

2 2 k=1 p j=1 q 

The time has come for Gauss' lemma to do its duty: 

"<q-1)/2[. I 1 "<p-1)/2 
(plq)(qlp) = (-l)L..j~1 JP q . (-l)L..k~1 [kqlp] 

"<•-1Jf2 . l "<p-1)/2 k I = ( -l)L..1~1 [Jplq + L..k~1 [ q p] 

.e=! !d =(-1) 2 2 

The proof of the Quadratic Reciprocity Law is now complete. 

An immediate consequence of this is Corollary 1. 
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Corollary 1. If p and q are distinct odd primes, then 

_ { 1 if p = 1 (mod 4) or q = 1 (mod 4) 
(p/q)(q/p)- 1 "f - -3 ( d 4) 

- 1 p = q = mo 

Proof. The number (p- 1)/2 · (q - 1)/2 is even if and only if at least one of the 
integers p and q is of the form 4k + 1; if both are of the form 4k + 3, then the product 
(p- 1)/2. (q - 1)/2 is odd. 

Multiplying each side of the equation of the Quadratic Reciprocity Law by (q I p) 
and using the fact that (q 1 p )2 = 1, we could also formulate this as Corollary 2. 

Corollary 2. If p and q are distinct odd primes, then 

{ 
(q/p) ifp=l(mod4)orq=l(mod4) 

(p/q) = 0 

-(q/p) Ifp=q=3(mod4) 

Let us see what this last series of results accomplishes. Take p to be an odd 
prime and a =f. ± 1 to be an integer not divisible by p. Suppose further that a has the 
factorization 

a = ±2ko p~~ p~2 ... p~' 

where the p; are distinct odd primes. Because the Legendre symbol is multiplicative, 

(ajp) = (±1fp)(2fplo(pdp)k1 ... (p,fp)k' 

To evaluate (a/ p ), we have only to calculate each of the symbols ( -1 I p ), (2/ p ), 
and (p; I p ). The values of ( -1 I p) and (2/ p) were discussed earlier, so that the one 
stumbling block is (p; I p ), where p; and p are distinct odd primes; this is where the 
Quadratic Reciprocity Law enters. For Corollary 2 allows us to replace (p; I p) by a 
new Legendre symbol having a smaller denominator. Through continued inversion 
and division, the computation can be reduced to that of the known quantities 

(-1/q) (lfq) (2/q) 

This is all somewhat vague, of course, so let us look at a concrete example. 

Example 9.5. Consider the Legendre symbol (29 I 53), for instance. Because both 29 = 
1 (mod 4) and 53 = 1 (mod 4), we see that 

(29/53) = (53/29) = (24/29) = (2/29)(3/29)(4/29) = (2/29)(3/29) 

With reference to Theorem 9.6, (2/29) = -1, while inverting again, 

(3/29) = (29/3) = (2/3) = -1 

where we used the congruence 29 = 2 (mod 3). The net effect is that 

(29/53) = (2/29)(3/29) = (-1)(-1) = 1 
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The Quadratic Reciprocity Law provides a very satisfactory answer to the prob­
lem of finding odd primes p =1= 3 for which 3 is a quadratic residue. Because 3 = 3 
(mod 4), Corollary 2 of Theorem 9.9 implies that 

l (p/3) if p = 1 (mod 4) 
(3/p) = 

-(p/3) if p = 3 (mod 4) 

Now p = 1 (mod 3) or p = 2 (mod 3). By Theorems 9.2 and 9.6, 

if p = 1 (mod 3) 

if p = 2 (mod 3) (p/3) = { -~ 
the implication of which is that (3 I p) = 1 if and only if 

p = 1 (mod4) and p = 1 (mod 3) (1) 

or 

p = 3 (mod4) and p = 2 (mod 3) (2) 

The restrictions in the congruencies in Eq. (1) are equivalent to requiring that p = 
1 (mod 12) whereas those congruencies in Eq. (2) are equivalent to p = 11 = -1 
(mod 12). The upshot of all this is Theorem 9.10. 

Theorem 9.10. If p =I= 3 is an odd prime, then 

{ 
1 if p = ±1 (mod 12) 

(3/p) = . 
-1 1f p = ±5 (mod 12) 

Example 9.6. For an example of the solution of a quadratic congruence with a com­
posite modulus, consider 

x 2 = 196 (mod 1357) 

Because 1357 = 23 · 59, the given congruence is solvable if and only if both 

x 2 = 196 (mod 23) and x 2 = 196 (mod 59) 

are solvable. Our procedure is to find the values of the Legendre symbols (196/23) and 
(196/59). 

The evaluation of (196/23) requires the use of Theorem 9.10: 

(196/23) = (12/23) = (3/23) = 1 

Thus, the congruence x 2 = 196 (mod 23) admits a solution. As regards the symbol 
(196/59), the Quadratic Reciprocity Law enables us to write 

(196/59) = (19/59) = -(59/19) = -(2/19) = -(-1) = 1 

Therefore, it is possible to solve x 2 = 196 (mod 59) and, in consequence, the congru­
ence x 2 = 196 (mod 1357) as well. 

To arrive at a solution, notice that the congruence x 2 = 196 = 12 (mod 23) is 
satisfiedbyx = 9, 14(mod23),andx2 = 196 = 19(mod59)hassolutionsx = 14,45 
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(mod 59). We may now use the Chinese Remainder Theorem to obtain the simultaneous 
solutions of the four systems: 

x = 14 (mod 23) 

x = 14 (mod 23) 

x = 9 (mod 23) 

x = 9 (mod 23) 

and 

and 

and 

and 

x = 14 (mod 59) 

x = 45 (mod 59) 

x = 14 (mod 59) 

x = 45 (mod 59) 

The resulting values x = 14, 635, 722, 1343 (mod 1357) are the desired solutions of 
the original congruence x2 = 196 (mod 1357). 

Example 9.7. Let us tum to a quite different application of these ideas. At an earlier 
stage, it was observed that if Fn = 22" + 1, n > 1, is a prime, then 2 is not a primitive 
root of Fn. We now possess the means to show that the integer 3 serves as a primitive 
root of any prime of this type. 

As a first step in this direction, note that any Fn is of the form 12k + 5. A sim­
ple induction argument confirms that 4m = 4 (mod 12) form= 1, 2, ... ; hence, we 
must have 

Fn = 22" + 1 =22m + 1 = 4m + 1 = 5 (mod 12) 

If Fn happens to be prime, then Theorem 9.10 permits the conclusion 

(3/Fn) = -1 

or, using Euler's criterion, 

3(Fn-i)/2 = -1 (mod Fn) 

Switching to the phi-function, the last congruence says that 

3</J(F.)/2 = -1 (mod Fn) 

From this, it may be inferred that 3 has order ¢(Fn) modulo Fn, and therefore 3 is a 
primitive root of Fn. For if the order of 3 were a proper divisor of 

f/J(Fn) = Fn- 1 = 22" 

then it would also divide ¢(Fn)/2, leading to the contradiction 

3</>(F.)/2 = 1 (mod Fn) 

PROBLEMS 9.3 

1. Evaluate the following Legendre symbols: 
(a) (71/73). 
(b) (-219/383). 
(c) (461/773). 
(d) (1234/4567). 
(e) (3658/12703). 
[Hint: 3658 = 2 · 31 ·59.] 

2. Prove that 3 is a quadratic nonresidue of all primes of the form 22n + 1, and all primes 
of the form 2P - 1, where p is an odd prime. 
[Hint: For all n, 4n = 4 (mod 12).] 

3. Determine whether the following quadratic congruences are solvable: 
(a) x2 = 219 (mod 419). 
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(b) 3x2 + 6x + 5 = 0 (mod 89). 
(c) 2x2 + 5x - 9 = 0 (mod 101). 

4. Verify that if p is an odd prime, then 

{ 
1 if p = 1 (mod 8) or 

(-2/p) = 
-1 if p = 5 (mod 8) or 

5. (a) Prove that if p > 3 is an odd prime, then 

p = 3 (mod 8) 

p = 7 (mod 8) 

{ 
1 if p = 1 (mod 6) 

(-3/p) = 
-1 if p = 5 (mod 6) 

(b) Using part (a), show that there are infinitely many primes of the form 6k + 1. 
[Hint: Assume that p 1, p2 , ... , Pr are all the primes of the form 6k + 1 and consider 
the integer N = (2PIP2 · · · Pr)2 + 3.] 

6. Use Theorem 9.2 and Problems 4 and 5 to determine which primes can divide integers 
of the forms n2 + 1, n2 + 2, or n2 + 3 for some value of n. 

7. Prove that there exist infinitely many primes of the form 8k + 3. 
[Hint: Assume that there are only finitely many primes of the form 8k + 3, say p 1, 

P2, ... , Pr. and consider the integer N = (PJP2 · · · Pr )2 + 2.] 
8. Find a prime number p that is simultaneously expressible in the forms x2 + y2, u2 + 2v2, 

and r 2 + 3s2 . 

[Hint: (-1/p) = (-2/p) = (-3/p) = 1.] 
9. If p and q are odd primes satisfying p = q + 4a for some a, establish that 

(a/p) = (ajq) 

and, in particular, that (6/37) = (6/13). 
[Hint: Note that (a/ p) = ( -q I p) and use the Quadratic Reciprocity Law.] 

10. Establish each of the following assertions: 
(a) (5/ p) = 1 if and only if p = 1, 9, 11, or 19 (mod 20). 
(b) (6/ p) = 1 if and only if p = 1, 5, 19, or 23 (mod 24). 
(c) (7 I p) = 1 if and only if p = 1, 3, 9, 19, 25, or 27 (mod 28). 

11. Prove that there are infinitely many primes of the form 5k - 1. 
[Hint: For any n > 1, the integer 5(n !)2 - 1 has a prime divisor p > n that is not of the 
form 5k + 1; hence, (5/ p) = 1.] 

12. Verify the following: 
(a) The prime divisors p =1= 3 of the integer n2 - n + 1 are of the form 6k + 1. 

[Hint: If pI n2 - n + 1, then (2n- 1)2 = -3 (mod p).] 
(b) The prime divisors p =1= 5 of the integer n2 + n- 1 are of the form 10k + 1 or 

10k + 9. 
(c) The prime divisors p of the integer 2n(n + 1) + 1 are of the form p = 1 (mod 4). 

[Hint: If p 12n(n + 1) + 1, then (2n + 1)2 = -1 (mod p).] 
(d) The prime divisors p of the integer 3n(n + 1) + 1 are of the form p = 1 (mod 6). 

13. (a) Show that if p is a prime divisor of 839 = 382 - 5 · 112, then (51 p) = 1. Use this 
fact to conclude that 839 is a prime number. 
[Hint: It suffices to consider those primes p < 29.] 

(b) Prove that both 397 = 202 - 3 and 733 = 292 - 3 · 62 are primes. 
14. Solve the quadratic congruence x2 = 11 (mod 35). 

[Hint: After solving x2 = 11 (mod 5) and x 2 = 11 (mod 7), use the Chinese Remainder 
Theorem.] 
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15. Establish that 7 is a primitive root of any prime of the form p = 24n + 1. 
[Hint: Because p = 3 or 5 (mod 7), (7 I p) = (p /7) = -1.] 

16. Let a and b > 1 be relatively prime integers, with b odd. If b = PIP2 · · · Pr is the de­
composition of b into odd primes (not necessarily distinct) then the Jacobi symbol (a/b) 
is defined by 

(ajb) = (afpi)(afpz) · · · (ajp,) 

where the symbols on the right-hand side of the equality sign are Legendre symbols. 
Evaluate the Jacobi symbols 

(21/221) (215/253) (631/1099) 

17. Under the hypothesis of the previous problem, show that if a is a quadratic residue of b, 
then (ajb) = 1; but, the converse is false. 

18. Prove that the following properties of the Jacobi symbol hold: If b and b' are positive 
odd integers and gcd(aa', bb') = 1, then 
(a) a= a' (mod b) implies that (a/b)= (a' jb). 
(b) (aa' jb) = (ajb)(a' jb). 
(c) (ajbb') = (ajb)(ajb'). 
(d) (a2 /b)= (ajb2 ) = 1. 
(e) (1/b) = 1. 
(f) (-1/b) = (-1)(b-l)/2. 

[Hint:Wheneveruandv areoddintegers,(u- 1)/2 + (v- 1)/2 = (uv- 1)/2(mod 
2).] 

(g) (2/b) = ( -1)<b2-1)/8. 
[Hint: Whenever u and v are odd integers, (u2 - 1)/8 + (v2 - 1)/8 = [(uv)2 - 1]/8 
(mod 2).] 

19. Derive the Generalized Quadratic Reciprocity Law: If a and bare relatively prime positive 
odd integers, each greater than 1, then 

a-1 b-! 

(ajb)(bja) = (-1)22 

[Hint: See the hint in Problem 18(f).] 
20. Using the Generalized Quadratic Reciprocity Law, determine whether the congruence 

x 2 = 231 (mod 1105) is solvable. 

9.4 QUADRATIC CONGRUENCES WITH COMPOSITE MODULI 

So far in the proceedings, quadratic congruences with (odd) prime moduli have been 
of paramount importance. The remaining theorems broaden the horizon by allowing 
a composite modulus. To start, let us consider the situation where the modulus is a 
power of a prime. 

Theorem 9.11. If pis an odd prime and gcd(a, p) = 1, then the congruence 

x 2 =a (mod pn) n :::, 1 

has a solution if and only if (a I p) = 1. 

Proof. As is common with many "if and only if' theorems, half of the proof is trivial 
whereas the other half requires considerable effort: If x 2 = a (mod pn) has a solution, 
then so does x 2 =a (mod p)-in fact, the same solution-whence (a/ p) = 1. 
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For the converse, suppose that (ajp) = 1. We argue that x 2 =a (mod pn) is 
solvable by inducting on n. Ifn = 1, there is really nothing to prove; indeed, (a/ p) = 1 
is just another way of saying that x 2 = a (mod p) can be solved. Assume that the result 
holds for n = k 2:: 1, so that x 2 =a (mod pk) admits a solution x0 . Then 

xJ =a+ bpk 

for an appropriate choice of b. In passing from k to k + 1, we shall use x0 and b to 
write down explicitly a solution to the congruence x 2 = a (mod pk+ 1 ). 

Toward this end, we first solve the linear congruence 

2xoy = -b (mod p) 

obtaining a unique solution y0 modulo p (this is possible because gcd(2x0 , p) = 1). 
Next, consider the integer 

Upon squaring this integer, we get 

(xo + YoPk)2 = xJ + 2xoYoPk + Y6P2k 

=a+ (b + 2xoyo)pk + Y6P2k 

But p I (b + 2x0y0), from which it follows that 

xf = (xo + YoPk)2 =a (mod pk+1) 

Thus, the congruence x 2 = a (mod pn) has a solution for n = k + 1 and, by induction, 
for all positive integers n. 

Let us run through a specific example in detail. The first step in obtaining a 
solution of, say, the quadratic congruence 

x2 = 23 (mod 72) 

is to solve x2 = 23 (mod 7), or what amounts to the same thing, the congruence 

x 2 = 2 (mod 7) 

Because (2/7) = 1, a solution surely exists; in fact, x0 = 3 is an obvious choice. 
Now xJ can be represented as 

32 = 9 = 23 + (-2)7 

so that b = -2 (in our special case, the integer 23 plays the role of a). Following 
the proof of Theorem 9.11, we next determine y so that 

6y = 2 (mod 7) 

that is, 3y = 1 (mod 7). This linear congruence is satisfied by y0 = 5. Hence, 

xo +?yo= 3 + 7 · 5 = 38 

serves as a solution to the original congruence x 2 = 23 (mod 49). It should be noted 
that -38 = 11 mod (49) is the only other solution. 

If, instead, the congruence 
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were proposed for solution, we would start with 

x2 = 23 (mod 72) 

obtaining a solution x0 = 38. Because 

382 = 23 + 29 . 72 

the integer b = 29. We would then find the unique solution Yo= 1 of the linear 
congruence 

76y = -29 (mod 7) 

Then x 2 = 23 (mod 73) is satisfied by 

xo + Yo · 72 = 38 + 1 · 49 = 87 

as well as -87 = 256 (mod 73). 

Having dwelt at length on odd primes, let us now take up the case p = 2. The 
next theorem supplies the pertinent information. 

Theorem 9.12. Let a be an odd integer. Then we have the following: 

(a) x2 = a (mod 2) always has a solution. 
(b) x 2 =a (mod 4) has a solution if and only if a = 1 (mod 4). 
(c) x2 =a (mod 2n), for n :::: 3, has a solution if and only if a= 1 (mod 8). 

Proof. The first assertion is obvious. The second depends on the observation that the 
square of any odd integer is congruent to 1 modulo 4. Consequently, x2 =a (mod 4) 
can be solved only when a is of the form 4k + 1; in this event, there are two solutions 
modulo 4, namely, x = 1 and x = 3. 

Now consider the case in which n :::: 3. Because the square of any odd integer 
is congruent to 1 modulo 8, we see that for the congruence x 2 =a (mod 2n) to be 
solvable a must be of the form 8k + 1. To go the other way, let us suppose that a = 
1 (mod 8) and proceed by induction on the exponent n. When n = 3, the congruence 
x 2 =a (mod 2n) is certainly solvable; indeed, each of the integers 1, 3, 5, 7 satisfies 
x2 = 1 (mod 8). Fix a value of n :::: 3 and assume, for the induction hypothesis, that 
the congruence x2 =a (mod 2n) admits a solution x0 . Then there exists an integer b 
for which 

X~= a +b2n 

Because a is odd, so is the integer x0 . It is therefore possible to find a unique solution 
Yo of the linear congruence 

XoY = -b (mod 2) 

We argue that the integer 

Xi = Xo + Yo2n-i 

satisfies the congruence x2 = a (mod 2n+ 1 ). Squaring yields 

(xo + Yo2n-1)2 = x~ + XoYo2n + y~2Zn-Z 
= a + (b + XoYo)2n + y~22n-2 
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By the way Yo was chosen, 21 (b + xoyo); hence, 

xr = (xo + Yo2n-1)2 =a (mod 2n+1) 

(we also use the fact that 2n- 2 = n + 1 + (n- 3) :::_ n + 1). Thus, the congruence 
x 2 = a (mod 2n+ 1) is solvable, completing the induction step and the proof. 

To illustrate: The quadratic congruence x2 = 5 (mod 4) has a solution, but 
x 2 = 5 (mod 8) does not; on the other hand, both x2 = 17 (mod 16) and x2 = 17 
(mod 32) are solvable. 

In theory, we can now completely settle the question of when there exists an 
integer x such that 

x2 =a (mod n) gcd(a, n) = 1 n > 1 

For suppose that n has the prime-power decomposition 

k0 ::: 0, k; ::: 0 

where the p; are distinct odd primes. Since the problem of solving the quadratic 
congruence x2 = a (mod n) is equivalent to that of solving the system of congruences 

x 2 = a (mod 2k0 ) 

x2 =a (mod p~') 

x2 =a (mod p~') 

our last two results may be combined to give the following general conclusion. 

Theorem 9.13. Let n = 2ko p~' · · · p~' be the prime factorization of n > 1 and let 
gcd(a, n) = 1. Then x 2 =a (mod n) is solvable if and only if 

(a) (a/pi)=1fori=1,2, ... ,r; 
(b) a = 1 (mod 4) if 41 n, but 8 )' n; a = 1 (mod 8) if 81 n. 

PROBLEMS 9.4 

1. (a) Show that 7 and 18 are the only incongruent solutions of x2 = -1 (mod 52). 

(b) Use part (a) to find the solutions of x2 = -1 (mod 53). 

2. Solve each of the following quadratic congruences: 
(a) x 2 = 7 (mod 33). 

(b) x2 = 14 (mod 53). 

(c) x 2 = 2 (mod 73). 

3. Solve the congruence x2 = 31 (mod 114). 

4. Find the solutions of x2 + 5x + 6 = 0 (mod 53) and x2 + x + 3 = 0 (mod 33). 

5. Prove that if the congruence x2 = a (mod 2n), where a is odd and n :::_ 3, has a solution, 
then it has exactly four incongruent solutions. 
[Hint; If Xo is any solution, then the four integers XQ, -Xo, Xo + 2n-i, -Xo + 2n-i are 
incongruent modulo 2n and comprise all the solutions.] 


	About the Author

	Contents

	Preface

	New to This Edition

	Acknowledgments


	1. Preliminaries

	1.1. Mathematical Induction

	1.2. The Binomial Theorem


	2. Divisibility Theory in the Integers

	2.1. Early Number Theory

	2.2. The Division Algorithm

	2.3. The Greatest Common Divisor

	2.4. The Euclidean Algorithm

	2.5. The Diophantine Equation ax+by=c


	3. Primes and Their Distribution

	3.1. The
 Fundamental Theorem of Arithmetic 
	3.2. The Sieve of Eratosthenes

	3.3. The Goldbach Conjecture


	4. The Theory of Congruences

	4.1. Carl Friedrich Gauss

	4.2. Basic Properties of Congruence

	4.3. Binary and Decimal Representation of Integers

	4.4. Linear Congruences and the Chinese Remainder Theorem


	5. Fermat's Theorem

	5.1. Pierre de Fermat

	5.2. Fermat's Little Theorem and Pseudoprimes

	5.3. Wilson's Theorem

	5.4. The Fermat-Kraitchik Factorization Method


	6. Number-Theoretic Functions

	6.1. The Sum and Number of Divisors

	6.2. The Möbius Inversion Formula 

	6.3. The Greatest Integer Function

	6.4. An Application to the Calendar


	7. Euler's Generalization of Fermat's Theorem

	7.1. Leonhard Euler

	7.2. Euler's Phi-Function

	7.3. Euler's Theorem

	7.4. Some Properties of the Phi-Function


	8. Primitive Roots and Indices

	8.1. The Order of an Integer Modulo n

	8.2. Primitive Roots for Primes

	8.3. Composite Numbers Having Primitive Roots

	8.4. The Theory of Indices


	9. The Quadratic Reciprocity Law

	9.1. Euler's Criterion

	9.2. The Legendre Symbol and Its Properties

	9.3. Quadratic Reciprocity

	9.4. Quadratic Congruences with Composite Moduli


	10. Introduction to Cryptography

	10.1. From Caesar Cipher to Public Key Cryptography

	10.2. The Knapsack Cryptosystem

	10.3. An Application of Primitive Roots to Cryptography


	11. Numbers of Special Form

	11.1. Marin Mersenne

	11.2. Perfect Numbers

	11.3. Mersenne Primes and Amicable Numbers

	11.4. Fermat Numbers


	12. Certain Nonlinear Diophantine Equations

	12.1. The Equation x^2+y^2=z^2

	12.2. Fermat's Last Theorem


	13. Representation of Integers as Sums of Squares

	13.1. Joseph Louis Lagrange

	13.2. Sums of Two Squares

	13.3. Sums of More Than Two Squares


	14. Fibonacci Numbers

	14.1. Fibonacci

	14.2. The Fibonacci Sequence

	14.3. Certain Identities Involving Fibonacci Numbers


	15. Continued Fractions

	15.1. Srinivasa Ramanujan

	15.2. Finite Continued Fractions

	15.3. Infinite Continued Fractions

	15.4. Pell's Equation


	16. Some Twentieth-Century Developments

	16.1. Hardy, Dickson, and Erdős

	16.2. Primality Testing and Factorization

	16.3. An Application to Factoring: Remote Coin Flipping

	16.4. The Prime Number Theorem and Zeta Function


	Miscellaneous Problems

	Appendixes

	General References

	Suggested Further Reading

	Tables

	Answers to Selected Problems


	Index




