
CHAPTER 

10 
INTRODUCTION TO CRYPTOGRAPHY 

I am fairly familiar with all forms of secret writings and am myself the 
author of a trifling manuscript on the subject. 

SIR ARTHUR CONAN DOYLE 

10.1 FROM CAESAR CIPHER TO PUBLIC KEY CRYPTOGRAPHY 

Classically, the making and breaking of secret codes has usually been confined to 
diplomatic and military practices. With the growing quantity of digital data stored 
and communicated by electronic data-processing systems, organizations in both the 
public and commercial sectors have felt the need to protect information from un
wanted intrusion. Indeed, the widespread use of electronic funds transfers has made 
privacy a pressing concern in most financial transactions. There thus has been a 
recent surge of interest by mathematicians and computer scientists in cryptogra
phy (from the Greek kryptos meaning hidden and graphein meaning to write), the 
science of making communications unintelligible to all except authorized parties. 
Cryptography is the only known practical means for protecting information transmit
ted through public communications networks, such as those using telephone lines, 
Inicrowaves, or satellites. 

In the language of cryptography, where codes are called ciphers, the information 
to be concealed is called plaintext. After transformation to a secret form, a message 
is called ciphertext. The process of converting from plaintext to ciphertext is said 
to be encrypting (or enciphering), whereas the reverse process of changing from 
ciphertext back to plaintext is called decrypting (or deciphering). 
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One of the earliest cryptographic systems was used by the great Roman emperor 
Julius Caesar around 50 B.c. Caesar wrote to Marcus Cicero using a rudimentary 
substitution cipher in which each letter of the alphabet is replaced by the letter that 
occurs three places down the alphabet, with the last three letters cycled back to the 
first three letters. If we write the ciphertext equivalent underneath the plaintext letter, 
the substitution alphabet for the Caesar cipher is given by 

Plaintext: AB CDEFG HIJ KLMN 0 P QR S TUVWXYZ 

Ciphertext: DEFG HIJ KLMNO P QR S TUVWX YZAB C 

For example, the plaintext message 

CAESAR WAS GREAT 

is transformed into the ciphertext 

FDHVDU ZDV JUHDW 

The Caesar cipher can be described easily using congruence theory. Any plaintext 
is first expressed numerically by translating the characters of the text into digits by 
means of some correspondence such as the following: 

A B c D E F G H I J K L M 
00 01 02 03 04 05 06 07 08 09 10 11 12 

N 0 p Q R s T u v w X y z 
13 14 15 16 17 18 19 20 21 22 23 24 25 

If P is the digital equivalent of a plaintext letter and C is the digital equivalent of 
the corresponding ciphertext letter, then 

C = P + 3 (mod 26) 

Thus, for instance, the letters of the message in Eq. (1) are converted to their equiv
alents: 

02 00 04 18 00 17 22 00 18 06 17 04 00 19 

Using the congruence C = P + 3 (mod 26), this becomes the ciphertext 

05 03 07 21 03 20 25 03 21 09 20 07 03 22 

To recover the plaintext, the procedure is simply reversed by means of the congruence 

P = C - 3 = C + 23 (mod 26) 

The Caesar cipher is very simple and, hence, extremely insecure. Caesar himself 
soon abandoned this scheme-not only because of its insecurity, but also because 
he did not trust Cicero, with whom he necessarily shared the secret of the cipher. 

An encryption scheme in which each letter of the original message is replaced 
by the same cipher substitute is known as a monoalphabetic cipher. Such crypto
graphic systems are extremely vulnerable to statistical methods of attack because 
they preserve the frequency, or relative commonness, of individual letters. In a 
polyalphabetic cipher, a plaintext letter has more than one ciphertext equivalent: the 
letter E, for instance, might be represented by J, Q, or X, depending on where it 
occurs in the message. 
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General fascination with cryptography had its initial impetus with the short 
story The Gold Bug, published in 1843 by the American writer Edgar Allan Poe. 
It is a fictional tale of the use of a table of letter frequencies to decipher directions 
for finding Captain Kidd's buried treasure. Poe fancied himself a cryptologist far 
beyond the ordinary. Writing for Alexander's Weekly, a Philadelphia newspaper, he 
once issued a claim that he could solve "forthwith" any monoalphabetic substitution 
cipher sent in by readers. The challenge was taken up by one G. W. Kulp, who 
submitted a 43-word ciphertext in longhand. Poe showed in a subsequent column 
that the entry was not genuine, but rather a ')argon of random characters having no 
meaning whatsoever." When Kulp's cipher submission was finally decoded in 1975, 
the reason for the difficulty became clear; the submission contained a major error on 
Kulp's part, along with 15 minor errors, which were most likely printer's mistakes 
in reading Kulp's longhand. 

The most famous example of a polyalphabetic cipher was published by the 
French cryptographer Blaise de Vigenere (1523-1596) in his Traicte de Chiffres 
of 1586. To implement this system, the communicating parties agree on an easily 
remembered word or phrase. With the standard alphabet numbered from A = 00 to 
Z = 25, the digital equivalent of the keyword is repeated as many times as nec
essary beneath that of the plaintext message. The message is then enciphered by 
adding, modulo 26, each plaintext number to the one immediately beneath it. The 
process may be illustrated with the keyword READY, whose numerical version 
is 17 04 00 03 24. Repetitions of this sequence are arranged below the numerical 
plaintext of the message 

ATTACK AT ONCE 

to produce the array 

00 19 19 00 02 10 

17 04 00 03 24 17 

00 19 

04 00 

14 13 02 04 

03 24 17 04 

When the columns are added modulo 26, the plaintext message is encrypted as 

17 23 19 03 00 01 04 19 17 11 19 08 

or, converted to letters, 

RXTDAB ET RLTI 

Notice that a given letter of plaintext is represented by different letters in ciphertext. 
The double T in the word ATTACK no longer appears as a double letter when 
ciphered, while the ciphertext letter R first corresponds to A and then to 0 in the 
original message. 

In general, any sequence of n letters with numerical equivalents b1, b2, ... , bn 
(00 _:::: b; _:::: 25) will serve as the keyword. The plaintext message is expressed as 
successive blocks P1 Pz · · · Pn of n two-digit integers P;, and then converted to 
ciphertext blocks C 1 Cz · · · C n by means of the congruences 

C; = P; + b; (mod 26) 

Decryption is carried out by using the relations 

P; = C; - b; (mod 26) 
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A weakness in Vigenere's approach is that once the length of the keyword has 
been determined, a coded message can be regarded as a number of separate mono
alphabetic ciphers, each subject to straightforward frequency analysis. A variant to 
the continued repetition of the keyword is what is called a running key, a random 
assignment of ciphertext letters to plaintext letters. A favorite procedure for generat
ing such keys is to use the text of a book, where both sender and recipient know the 
title of the book and the starting point of the appropriate lines. Because a running 
key cipher completely obscures the underlying structure of the original message, the 
system was long thought to be secure. But it does not, as Scientific American once 
claimed, produce ciphertext that is "impossible of translation." 

A clever modification that Vigenere contrived for his polyalphabetic cipher is 
currently called the autokey ("automatic key"). This approach makes use of the 
plaintext message itself in constructing the encryption key. The idea is to start off 
the keyword with a short seed or primer (generally a single letter) followed by 
the plaintext, whose ending is truncated by the length of the seed. The autokey 
cipher enjoyed considerable popularity in the 16th and 17th centuries, since all it 
required of a legitimate pair of users was to remember the seed, which could easily be 
changed. 

Let us give a simple example of the method. 

Example 10.1. Assume that the message 

ONE IF BY DAWN 

is to be encrypted. Taking the letter K as the seed, the keyword becomes 

KONEIFBYDAW 

When both the plaintext and keyword are converted to numerical form, we obtain the 
array 

14 13 04 

10 14 13 

08 05 

04 08 

01 24 

05 01 

03 00 22 13 

24 03 00 22 

Adding the integers in matching positions modulo 26 yields the ciphertext 

24 01 17 12 13 06 25 01 03 22 09 

or, changing back to letters: 

YBR MN GZ BDWJ 

Decipherment is achieved by returning to the numerical form of both the plain
text and its ciphertext. Suppose that the plaintext has digital equivalents PI Pz ... Pn 
and the ciphertext CI C2 ... Cn. If S indicates the seed, then the first plaintext number 
is 

PI = CI - S = 24- 10 = 14 (mod 26) 
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Thus, the deciphering transformation becomes 

Pk = Ck - Pk-1 (mod 26), 2 ~ k ~ n 

This recovers, for example, the integers 

P2 = 01 - 14 = -13 = 13 (mod 26) 

P3 = 17 - 13 = 4 (mod 26) 

where, to maintain the two-digit format, the 4 is written 04. 
A way to ensure greater security in alphabetic substitution ciphers was devised 

in 1929 by Lester Hill, an assistant professor of mathematics at Hunter College. 
Briefly, Hill's approach is to divide the plaintext message into blocks of n letters 
(possibly filling out the last block by adding "dummy" letters such as X's), and then 
to encrypt block by block using a system of n linear congruences in n variables. 
In its simplest form, when n = 2, the procedure takes two successive letters and 
transforms their numerical equivalents P1 P2 into a block C 1 C2 of ciphertext 
numbers via the pair of congruences 

C1 = aP1 + bP2 (mod 26) 

Cz = cP1 + dPz (mod 26) 

To permit decipherment, the four coefficients a, b, c, d must be selected so the 
gcd(ad- be, 26) = 1. 

Example 10.2. To illustrate Hill's cipher, let us use the congruences 

C1 = 2P1 + 3P2 (mod 26) 

C2 = 5P, + 8P2 (mod 26) 

to encrypt the message BUY NOW. The first block BU of two letters is numerically 
equivalent to 01 20. This is replaced by 

2(01) + 3(20) = 62 = 10 (mod 26) 

5(01) + 8(20) = 165 = 09 (mod 26) 

Continuing two letters at a time, we find that the completed ciphertext is 

10 09 09 16 16 12 

which can be expressed alphabetically as KJJ QQM. 
Decipherment requires solving the original system of congruences for P1 and P2 

in terms of C 1 and C 2 • It follows from the proof of Theorem 4. 9 that the plaintext block 
P1 P2 can be recovered from the ciphertext block C1 C2 by means of the congruences 

P1 = 8C1 - 3C2 (mod 26) 

P2 = -5C1 + 2C2 (mod 26) 

For the block 1 0 09 of ciphertext, we calculate 

P1 = 8(10)- 3(09) = 53 = 01 (mod 26) 

P2 = -5(10) + 2(09) = -32 = 20 (mod 26) 

which is the same as the letter-pair BU. The remaining plaintext can be restored in a 
similar manner. 
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An influential nonalphabetic cipher was devised by Gilbert S. Yerman in 1917 
while he was employed by the American Telephone and Telegraph Company 
(AT&T). Yerman was interested in safeguarding information sent by the newly de
veloped teletypewriter. At that time, wire messages were transmitted in the Baudot 
code, a code named after its French inventor J. M. E. Baudot. Baudot represented 
each letter of the alphabet by a five-element sequence of two symbols. If we take 
the two symbols to be 1 and 0, then the complete table is given by 

A= 11000 J = 11010 s = 10100 

B = 10011 K=11110 T= 00001 

c = 01110 L=01001 u = 11100 

D = 10010 M = 00111 y = 01111 

E= 10000 N = 00110 w = 11001 

F = 10110 0 = 00011 X= 10111 

G = 01011 p = 01101 y = 10101 

H = 00101 Q = 11101 z = 10001 

I= 01100 R = 01010 

Any plaintext message such as 

ACT NOW 

would first be transformed into a sequence of binary digits: 

110000111000001001100001111001 

Yerman's innovation was to take as the encryption key an arbitrary sequence of 1 's 
and O's with length the same as that of the numerical plaintext. A typical key might 
appear as 

101001011100100010001111001011 

where the digits could be chosen by flipping a coin with heads as 1 and tails as 0. 
Finally, the ciphertext is formed by adding modulo 2 the digits in equivalent places 
in the two binary strings. The result in this instance becomes 

011001100100101011101111110010 

A crucial point is that the intended recipient must possess in advance the encryption 
key, for then the numerical plaintext can be reconstructed by merely adding modulo 
2 corresponding digits of the encryption key and ciphertext. 

In the early applications of Yerman's telegraph cipher, the keys were written on 
numbered sheets of paper and then bound into pads held by both correspondents. A 
sheet was torn out and destroyed after its key had been used just once. For this reason, 
the Yerman enciphering procedure soon became known as the one-time system 
or one-time pad. The cryptographic strength of Yerman's method of enciphering 
resided in the possibly extreme length of the encryption key and the absence of any 
pattern within its entries. This assured security that was attractive to the military or 
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diplomatic services of many countries. In 1963, for instance, a teleprinter hot line 
was established between Washington and Moscow using a one-time tape. 

In conventional cryptographic systems, such as Caesar's cipher, the sender and 
receiver jointly have a secret key. The sender uses the key to encrypt the plaintext 
to be sent, and the receiver uses the same key to decrypt the ciphertext obtained. 
Public-key cryptography differs from conventional cryptography in that it uses two 
keys, an encryption key and a decryption key. Although the two keys effect inverse 
operations and are therefore related, there is no easily computed method of deriving 
the decryption key from the encryption key. Thus, the encryption key can be made 
public without compromising the decryption key; each user can encrypt messages, 
but only the intended recipient (whose decryption key is kept secret) can decipher 
them. A major advantage of a public-key cryptosystem is that it is unnecessary for 
senders and receivers to exchange a key in advance of their decision to communicate 
with each other. 

In 1977, R. Rivest, A. Shamir, and L. Adleman proposed a public-key crypto
system that uses only elementary ideas from number theory. Their enciphering sys
tem is called RSA, after the initials of the algorithm's inventors. Its security depends 
on the assumption that in the current state of computer technology, the factorization 
of composite numbers with large prime factors is prohibitively time-consuming. 

Each user of the RSA system chooses a pair of distinct primes, p and q, large 
enough that the factorization of their product n = pq, called the enciphering modu
lus, is beyond all current computational capabilities. For instance, one might pick p 
and q with 200 digits each, so that n has roughly 400 digits. Having selected n, the 
user then chooses a random positive integer k, the enciphering exponent, satisfying 
gcd(k, ¢(n )) = 1. The pair (n, k) is placed in a public file, analogous to a telephone 
directory, as the user's personal encryption key. This allows anyone else in the com
munication network to encrypt and send a message to that individual. Notice that 
whereas n is openly revealed, the listed public key does not mention the factors p 
and q ofn. 

The encryption process begins with the conversion of the message to be sent 
into an integer M by means of a "digital alphabet" in which each letter, number, or 
punctuation mark of the plaintext is replaced by a two-digit integer. One standard 
procedure is to use the following assignment: 

A=OO K= 10 U=20 1 = 30 

B = 01 L = 11 v = 21 2 = 31 

C=02 M= 12 W=22 3 = 32 

D=03 N=13 X=23 4= 33 

E=04 0= 14 Y=24 5 = 34 

F=05 p = 15 Z= 25 6 = 35 

G=06 Q= 16 '= 26 7 = 36 

H=07 R= 17 . = 27 8 = 37 

I= 08 s = 18 ? = 28 9 = 38 

J= 09 T= 19 0 = 29 ! = 39 
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with 99 indicating a space between words. In this scheme, the message 

The brown fox is quick 

is transformed into the numerical string 

Af= 1907049901171422139905142399081899162008021027 

It is assumed that the plaintext number Af < n, where n is the enciphering modulus. 
Otherwise it would be impossible to distinguish Af from any larger integer congruent 
to it modulo n. When the message is too long to be handled as a single number Af < n, 
then Af is broken up into blocks of digits Af1, Af2, ... , Afs of the appropriate size. 
Each block is encrypted separately. 

Looking up the intended recipient's encryption key (n, k) in the public directory, 
the sender disguises the plaintext number Af as a ciphertext number r by raising Af 

to the kth power and then reducing the result modulo n; that is, 

Afk = r (mod n) 

A 200-character message can be encrypted in seconds on a high-speed computer. 
Recall that the public enciphering exponent k was originally selected so that 
gcd(k, ¢(n)) = 1. Although there are many suitable choices fork, an obvious sug
gestion is to pick k to be any prime larger than both p and q. 

At the other end, the authorized recipient deciphers the transmitted information 
by first determining the integer j, the secret recovery exponent, for which 

kj = 1 (mod ¢(n)) 

Because gcd(k, ¢(n)) = 1, this linear congruence has a unique solution modulo 
¢(n ). In fact, the Euclidean algorithm produces j as a solution x to the equation 

kx +¢(n)y = 1 

The recovery exponent can only be calculated by someone who knows both k and 
¢(n) = (p- 1)(q- 1) and, hence, knows the prime factors p and q of n. Thus, j 
is secure from an illegitimate third party whose knowledge is limited to the public 
key (n, k). 

Matters have been arranged so that the recipient can now retrieve Af from r 
by simply calculating rj modulo n. Because kj = 1 + ¢(n)t for some integer t, it 
follows that 

rj = (Afk)j = Afl+</>(n)t 

= Af(Af<l>(n))t = Af · 1t = Af (mod n) 

whenever gcd(Af, n) = 1. In other words, raising the ciphertext number to the jth 
power and reducing it modulo n recovers the original plaintext number Af. 

The assumption that gcd(Af, n) = 1 was made to use Euler's theorem. In the 
unlikely event that Af and n are not relatively prime, a similar argument establishes 
that rj = Af (mod p) and rj = Af (mod q ), which then yields the desired congruence 
rj = Af (mod n). We omit the details. 

The major advantage of this ingenious procedure is that the encryption of a 
message does not require the knowledge of the two primes p and q, but only their 
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product n; there is no need for anyone other than the receiver of the message ever to 
know the prime factors critical to the decryption process. 

Example 10.3. For the reader to gain familiarity with the RSA public-key algorithm, 
let us work an example in detail. We first select two primes 

p =29 q =53 

of an unrealistically small size, to get an easy-to-handle illustration. In practice, p and 
q would be large enough so that the factorization of the nonsecret n = pq is not fea
sible. Our enciphering modulus is n = 29 ·53= 1537 and cp(n) = 28 ·52= 1456. 
Because gcd(47, 1456) = 1, we may choose k = 47 to be the enciphering expo
nent. Then the recovery exponent, the unique integer j satisfying the congruence 
kj = 1 (mod cp(n)), is j = 31. To encrypt the message 

NOWAY 

first translate each letter into its digital equivalent using the substitution mentioned 
earlier; this yields the plaintext number 

M = 131499220024 

We want each plaintext block to be an integer less than 1537. Given this restriction, 
it seems reasonable to split Minto blocks of three digits each. The first block, 131, 
encrypts as the ciphertext number 

13147 = 570 (mod 1537) 

These are the first digits of the secret transmission. At the other end, knowing that the 
recovery exponent is j = 31, the authorized recipient begins to recover the plaintext 
number by computing 

57031 = 131 (mod 1537) 

The total ciphertext of our message is 

0570 1222 0708 1341 
For the RSA cryptosystem to be secure it must not be computationally feasible 

to recover the plaintext M from the information assumed to be known to a third 
party, namely, the listed public-key (n, k). The direct method of attack would be 
to attempt to factor n, an integer of huge magnitude; for once the factors are deter
mined,therecoveryexponentjcanbecalculatedfromcf>(n) = (p -l)(q -1)andk. 
Our confidence in the RSA system rests on what is known as the work factor, the 
expected amount of computer time needed to factor the product of two large primes. 
Factoring is computationally more difficult than distinguishing between primes and 
composites. On today's fastest computers, a 200-digit number can routinely be tested 
for primality in less than 20 seconds, whereas the running time required to factor 
a composite number of the same size is prohibitive. It has been estimated that the 
quickest factoring algorithm known can use approximate! y ( 1. 2) 1023 computer oper
ations to resolve an integer with 200 digits into its prime factors; assuming that each 
operation takes 1 nanosecond (10-9 seconds), the factorization time would be about 
(3.8)106 years. Given unlimited computing time and some unimaginably efficient 
factoring algorithm, the RSA cryptosystem could be broken, but for the present it 
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appears to be quite safe. All we need do is choose larger primes p and q for the 
enciphering moduli, always staying ahead of the current state of the art in factoring 
integers. 

A greater threat is posed by the use of widely distributed networks of computers, 
working simultaneously on pieces of data necessary for a factorization and commu
nicating their results to a central site. This is seen in the factoring of RSA -129, one 
of the most famous problems in cryptography. 

To demonstrate that their cryptosystem could withstand any attack on its security, 
the three inventors submitted a ciphertext message to Scientific American, with an 
offer of $100 to anyone who could decode it. The message depended on a 129-digit 
enciphering modulus that was the product of two primes of approximately the same 
length. This large number acquired the name RSA-129. Taking into account the 
most powerful factoring methods and fastest computers available at the time, it 
was estimated that at least 40 quadrillion years would be required to break down 
RSA-129 and decipher the message. However, by devoting enough computing power 
to the task the factorization was realized in 1994. A worldwide network of some 
600 volunteers participated in the project, running more than 1600 computers over 
an 8-month period. What seemed utterly beyond reach in 1977 was accomplished a 
mere 1 7 years later. The plaintext message is the sentence 

"The magic words are squeamish ossifrage." 

(An ossifrage, by the way, is a kind of hawk.) 
Drawn up in 1991, the 42 numbers in the RSA Challenge List serve as something 

of a test for recent advances in factorization methods. The latest factoring success 
showed that the 174-digit number (576 binary digits) RSA-576 could be written as 
the product of two primes having 87 digits each. 

PROBLEMS 10.1 
1. Encrypt the message RETURN HOME using the Caesar cipher. 
2. If the Caesar cipher produced KDSSB ELUWKGDB, what is the plaintext message? 
3. (a) Alinearcipherisdefined bythecongruenceC = aP + b (mod26), where a andb are 

integers with gcd(a, 26) = 1. Show that the corresponding decrypting congruence 
is P = a'(C- b) (mod 26), where the integer a' satisfies aa' = 1 (mod 26). 

(b) Using the linear cipher C = 5P + 11 (mod 26), encrypt the message NUMBER 
THEORY IS EASY. 

(c) DecryptthemessageRXQTGU HOZTKGH FJ KTMMTG, which was produced using 
the linear cipher C = 3P + 7 (mod 26). 

4. In a lengthy ciphertext message, sent using a linear cipher C = aP + b (mod 26), the 
most frequently occurring letter is Q and the second most frequent is J. 
(a) Break the cipher by determining the values of a and b. 

[Hint: The most often used letter in English text is E, followed by T.] 
(b) Write out the plaintext for the intercepted message WCPQ JZQO MX. 

5. (a) Encipher the message HAVE A NICE TRIP using a Vigenere cipher with the keyword 
MATH. 

(b) The ciphertext BS FMX KFSGR JAPWL is known to have resulted from a Vigenere 
cipher whose keyword is YES. Obtain the deciphering congruences and read the 
message. 



INTRODUCTION TO CRYITOGRAPHY 207 

6. (a) Encipher the message HAPPY DAYS ARE HERE using the autokey cipher with 
seed Q. 

(b) Decipher the message BBOT XWBZ AWUYGK, which was produced by the auto key 
cipher with seed RX. 

7. (a) Use the Hill cipher 

C1 = 5P1 + 2P2 (mod 26) 

C2 = 3P1 + 4P2 (mod 26) 

to encipher the message GIVE THEM TIME. 
(b) The ciphertext ALXWU VADCOJO has been enciphered with the cipher 

C1 = 4P1 + 11P2 (mod 26) 

Cz = 3P1 + 8Pz (mod 26) 

Derive the plaintext. 
8. A long string of ciphertext resulting from a Hill cipher 

C1 = aP1 + bP2 (mod 26) 

Cz = cP1 + dP2 (mod 26) 

revealed that the most frequently occurring two-letter blocks were HO and PP, in that 
order. 
(a) Find the values of a, b, c, and d. 

rf/int: The most common two-letter blocks in the English language are TH, followed 
by HE.] 

(b) What is the plaintext for the intercepted message PPIH HOG RAPVT? 
9. Suppose that the message GO SOX is to be enciphered using Yerman's telegraph cipher. 

(a) Express the message in Baudot code. 
(b) If the enciphering key is 

0111010111101010100110010 

obtain the alphabetic form of the ciphertext. 
10. A plaintext message expressed in Baudot code has been converted by the Yerman cipher 

into the string 

110001110000111010100101111111 

If it is known that the key used for encipherment was 

011101011001011110001001101010 

recover the message in its alphabetic form. 
11. If n = pq = 274279 and ¢(n) = 272376, find the primes p and q. 

[Hint: Note that 

p + q = n- ¢(n) + 1 

p _ q = [(p + q)z _ 4n]'12.] 

12. When the RSA algorithm is based on the key (n, k) = (3233, 37), what is the recovery 
exponent for the cryptosystem? 

13. Encrypt the plaintext message GOLD MEDAL using the RSA algorithm with key (n, k) = 
(2419, 3). 
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14. The ciphertext message produced by the RSA algorithim with key (n, k) = (1643, 223) 
is 

0833 0823 1130 0055 0329 1099 

Determine the original plaintext message. 
[Hint: The recovery exponent is j = 7.] 

15. Decrypt the ciphertext 

1369 1436 0119 0385 0434 1580 0690 

that was encrypted using the RSA algorithm with key (n, k) = (2419, 211). 
[Hint: The recovery exponent is 11. Note that it may be necessary to fill out a plaintext 
block by adding zeros on the left.] 

10.2 THE KNAPSACK CRYPTOSYSTEM 

A public-key cryptosystem also can be based on the classic problem in combinatorics 
known as the knapsack problem, or the subset sum problem. This problem may be 
stated as follows: Given a knapsack of volume V and n items of various volumes 
a 1, a2 , ... , an, can a subset of these items be found that will completely fill the 
knapsack? There is an alternative formulation: For positive integers a1, a2, ... , an 
and a sum V, solve the equation 

V = a1X2 + a2X2 + · · · + anXn 

where X; = 0 or 1 fori = 1, 2, ... , n. 
There might be no solution, or more than one solution, to the problem, depending 

on the choice of the sequence a1, a2, ... , an and the integer V. For instance, the 
knapsack problem 

22 = 3xi + ?x2 + 9x3 + llx4 + 20xs 

is not solvable; but 

has two distinct solutions, namely 

X2 = X3 = X4 = 1 XJ = Xs = 0 

and 

X2 = x5 = 1 

Finding a solution to a randomly chosen knapsack problem is notoriously dif
ficult. None of the known methods for attacking the problem are substantially less 
time-consuming than is conducting an exhaustive direct search, that is, by testing 
all the 2n possibilities for XJ, x2, ... , Xn· This is computationally impracticable for 
n greater than 100, or so. 

However, if the sequence of integers a 1, a2 , ... , an happens to have some special 
properties, the knapsack problem becomes much easier to solve. We call a sequence 
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at, az, ... , an superincreasing when each a; is larger than the sum of all the preceding 
ones; that is, 

i = 2, 3, ... , n 

A simple illustration of a superincreasing sequence is 1, 2, 4, 8, ... , 2n, where 
2; > i - 1 = 1 + 2 + 4 + · · · + 2; -t. For the corresponding knapsack problem, 

the unknowns X; are just the digits in the binary expansion of V. 
Knapsack problems based on superincreasing sequences are uniquely solvable 

whenever they are solvable at all, as our next example shows. 

Example 10.4. Let us solve the superincreasing knapsack problem 

28 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5 

We start with the largest coefficient in this equation, namely 41. Because 41 > 28, it 
cannot be part of our subset sum; hence x5 = 0. The next-largest coefficient is 20, with 
20 < 28. Now the sum of the preceding coefficients is 3 + 5 + 11 < 28, so that these 
cannot fill the knapsack; therefore 20 must be included in the sum, and so x4 = 1. 
Knowing the values of x4 and x5, the original problem may be rewritten as 

8 = 3xt + 5xz + 11x3 

A repetition of our earlier reasoning now determines whether 11 should be in our 
knapsack sum. In fact, the inequality 11 > 8 forces us to take x 3 = 0. To clinch matters, 
we are reduced to solving the equation 8 = 3x1 + 5x2, which has the obvious solution 
x 1 = x2 = 1. This identifies a subset of 3, 5, 11, 20, 41 having the desired sum: 

28=3+5+20 

It is not difficult to see how the procedure described in Example 10.4 operates, 
in general. Suppose that we wish to solve the knapsack problem 

V = atXt + azxz + · · · + anXn 

where a1, az, ... , an is a superincreasing sequence of integers. Assume that V can 
be obtained by using some subset of the sequence, so that V is not larger than the 
sum a1 + az +···+an. Working from right to left in our sequence, we begin by 
letting Xn = 1 if v ~an and Xn = 0 if v <an. Then obtain Xn-1. Xn-2· ... 'Xt, in 
turn, by choosing 

if V - (ai+!Xi+t + · · · + anXn) ~a; 

if V - (a;+tXi+l + · · · + anXn) < a; 

With this algorithm, knapsack problems using superincreasing sequences can be 
solved quite readily. 

A public-key cryptosystem based on the knapsack problem was devised by 
R. Merkle and M. Hellman in 1978. It works as follows. A typical user of the system 
starts by choosing a superincreasing sequence a1, a2, ... , an. Now select a modulus 
m > 2an and a multiplier a, with 0 <a < m and gcd(a, m) = 1. This ensures that 
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the congruence ax = 1 (mod m) has a unique solution, say, x = c (mod m ). Finally, 
form the sequence of integers b1, bz, ... , bn defined by 

b; = aa; (mod m) i = 1, 2, ... , n 

where 0 < b; < m. Carrying out this last transformation generally destroys the 
superincreasing property enjoyed by the a;. 

The user keeps secret the original sequence a 1, az, ... , an, and the numbers m 
and a, but publishes b1, bz, ... , bn in a public directory. Anyone wishing to send a 
message to the user employs the publicly available sequence as the encryption key. 

The sender begins by converting the plaintext message into a string M of O's 
and 1 's using the binary equivalent of letters: 

Letter Binary equivalent Letter Binary equivalent 

A 00000 N 01101 
B 00001 0 01110 
c 00010 p 01111 
D 00011 Q 10000 
E 00100 R 10001 
F 00101 s 10010 
G 00110 T 10011 
H 00111 u 10100 
I 01000 v 10101 
J 01001 w 10110 
K 01010 X 10111 
L 01011 y 11000 
M 01100 z 11001 

For example, the message 
First Place 

would be converted into the numerical representation 

M =00101 01000 10001 10010 10011 01111 01011 00000 
00010 00100 

The string is then split into blocks of n binary digits, with the last block being filled 
out with l's at the end, if necessary. The public encrypting sequence b1, bz, ... , bn 
is next used to transform a given plaintext block, say x1x2 • · · Xn, into the sum 

S = b1x1 + bzxz + · · · + bnXn 

The number S is the hidden information that the sender transmits over a communi
cation channel, which is presumed to be insecure. 

Notice that because each x; is either 0 or 1, the problem of recreating the plaintext 
block from S is equivalent to solving an apparently difficult knapsack problem 
("difficult" because the sequence b1, b2 , ... , bn is not necessarily superincreasing). 
On first impression, the intended recipient and any eavesdropper are faced with the 
same task. However, with the aid of the private decryption key, the recipient can 
change the difficult knapsack problem into an easy one. No one without the private 
key can make this change. 
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Knowing c and m, the recipient computes 

S' = cS (mod m) 0 ~ S' < m 

or, expanding this, 

S' = cbtXt + cbzxz + · · · + cbnXn (mod m) 

= caatXt + caazxz + · · · + caanxn (mod m) 

Now ca = 1 (mod m), so that the previous congruence becomes 

S' = atXt + azxz + · · · + anXn (mod m) 

Because m was initially chosen to satisfy m > 2an > at + az + ···+an, we obtain 
a1x1 + azxz + · · · + anxn < m. In light of the condition 0 ~ S' < m, the equality 

S' = atXt + azxz + · · · + anXn 

must hold. The solution to this superincreasing knapsack problem furnishes the 
solution to the difficult problem, and the plaintext block x1x2 • • · Xn of n digits is 
thereby recovered from S. 

To help make the technique clearer, we consider a small-scale example with 
n = 5. 

Example 10.5. Suppose that a typical user of this cryptosystem selects as a secret key 
the superincreasing sequence 3, 5, 11, 20, 41, the modulus m = 85, and the multiplier 
a = 44. Each member of the superincreasing sequence is multiplied by 44 and reduced 
modulo 85 to yield 47, 50, 59, 30, 19. This is the encryption key that the user submits 
to the public directory. 

Someone who wants to send a plaintext message to the user, such as 

HELP US 

first converts it into the following string of O's and 1 's: 

A1 =00111 00100 01011 01111 10100 10010 

The string is then broken up into blocks of digits, in the current case blocks of length 
5. Using the listed public key to encrypt, the sender transforms the successive blocks 
into 

108 = 47.0 +50. 0 +59. 1 + 30. 1 + 19. 1 

59 = 4 7 . 0 + 50 . 0 + 59 . 1 + 30 . 0 + 19 . 0 

99 = 47.0 +50. 1 +59. 0 + 30. 1 + 19. 1 

158 = 47 . 0 +50. 1 +59. 1 + 30. 1 + 19. 1 

106 = 47. 1 +50. 0 +59. 1 + 30. 0 + 19. 0 

77 = 47. 1 +50. 0 +59. 0 + 30. 1 + 19.0 

The transmitted ciphertext consists of the sequence of positive integers 

108 59 99 158 106 77 

To read the message, the legitimate receiver first solves the congruence 44x = 1 
(mod 85), yielding x = 29 (mod 85). Then each ciphertext number is multiplied by 29 
and reduced modulo 85, to produce a superincreasing knapsack problem. For instance, 
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108 is converted to 72, because 108 · 29 = 72 (mod 85); and the corresponding 
knapsack problem is 

72 = 3x, + 5x2 + llx3 + 20x4 + 41xs 

The procedure for handling superincreasing knapsack problems quickly produces the 
solutionx1 = x2 = O,x3 = x4 = x5 = 1. In this way, thefirstblockOOlll of the binary 
equivalent of the plaintext is recovered. 

The Merkle-Hellman cryptosystem aroused a great deal of interest when it was 
first proposed, because it was based on a provably difficult problem. However, in 
1982 A. Shamir invented a reasonably fast algorithm for solving knapsack problems 
that involved sequences b,, b2, ... , bn, where b; = aa; (mod m) and a,, a2, ... , an 
is superincreasing. The weakness of the system is that the public encryption key 
b,, b2, ... , bn is too special; multiplying by a and reducing modulo m does not 
completely disguise the sequence a,, a2, ... , an. The system can be made somewhat 
more secure by iterating the modular multiplication method with different values of a 
and m, so that the public and private sequences differ by several transformations. But 
even this construction was successfully broken in 1985. Although most variations 
of the Merkle-Hellman scheme have been shown to be insecure, there are a few that 
have, so far, resisted attack. 

PROBLEMS 10.2 

1. Obtain all solutions of the knapsack problem 

21 = 2x1 + 3x2 + 5x3 + 7x4 + 9xs + llx6 

2. Determine which of the sequences below are superincreasing: 
(a) 3, 13, 20, 37, 81. 
(b) 5, 13, 25, 42, 90. 
(c) 7, 27, 47, 97, 197, 397. 

3. Find the unique solution of each of the following superincreasing knapsack problems: 

(a) 118 = 4x1 + 5x2 + lOx3 + 20x4 + 4lx5 + 99x6. 
(b) 51 = 3x, + 5x2 + 9x3 + l8x4 + 31xs. 
(c) 54= x, + 2x2 + 5x3 + 9x4 + 18xs + 40x6. 

4. Consider a sequence of positive integers a 1, a2, ... , an, where ai+i > 2a; fori = 1, 
2, ... , n - 1. Show that the sequence is superincreasing. 

5. A user of the knapsack cryptosystem has the sequence 49, 32, 30, 43 as a listed encryption 
key. If the user's private key involves the modulus m = 50 and multiplier a = 33, 
determine the secret superincreasing sequence. 

6. The ciphertext message produced by the knapsack cryptosystem employing the super
increasing sequence 1, 3, 5, 11, 35, modulus m = 73, and multiplier a= 5 is 55, 15, 
124, 109, 25, 34. Obtain the plaintext message. 
[Hint: Note that 5 · 44 = 1 (mod 73).] 

7. A user of the knapsack cryptosystem has a private key consisting of the superincreasing 
sequence 2, 3, 7, 13, 27, modulus m = 60, and multiplier a = 7. 
(a) Find the user's listed public key. 
(b) With the aid of the public key, encrypt the message SEND MONEY. 
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Most modern cryptographic schemes rely on the presumed difficulty of solving some 
particular number theoretic problem within a reasonable length of time. For instance, 
the security underlying the widely used RSA cryptosystem discussed in Section 
10.1 is the sheer effort required to factor large numbers. In 1985, Taber ElGamal 
introduced a method of encrypting messages based on a version of the so-called 
discrete logarithm problem: that is, the problem of finding the power 0 < x < ¢(n ), 
if it exists, which satisfies the congruence rx = y (modn) for given r, y, and n. 
The exponent xis said to be discrete logarithm of y to the baser, modulo n. The 
advantage of requiring that the base r be a primitive root of prime number n is the 
assurance that y will always have a well-defined discrete logarithm. The logarithm 
could be found by exhaustive search; that is, by calculating the successive powers of 
r until y = rx (modn) is reached. Of course, this would generally not be practical 
for a large modulus n of several hundred digits. 

Example 8.4 indicates that, say, the discrete logarithm of7 to the base 2 modulo 
13 is 11; expressed otherwise, 11 is the smallest positive integer x for which 2x = 
7 (mod 13). In that example, we used the classical notation 11 = ind2 7 (mod 13) 
and spoke of 11 as being the index of 7, rather than employing the more current 
terminology. 

The ElGamal cryptosystem, like the RSA system, requires that each user possess 
both a public and a private (secret) key. The means needed to transmit a ciphered 
message between parties is announced openly, even published in a directory. How
ever, deciphering can be done only by the intended recipient using a private key. 
Because knowledge of the public key and the method of encipherment is not suffi
cient to discover the other key, confidential information can be communicated over 
an insecure channel. 

A typical user of this system begins by selecting a prime number p along with 
one of its primitive roots r. Then an integer k, where 2 _:::: k _:::: p - 2, is randomly 
chosen to serve as the secret key; thereafter, 

a = rk (mod p) 0 _:::: a _:::: p - 1 

is calculated. The triple of integers (p, r, a) becomes the person's public key, made 
available to all others for cryptographic purposes. The value of the exponent k 
is never revealed. For an unauthorized party to discover k would entail solving a 
discrete logarithm problem that would be nearly intractable for large values of a 
andp. 

Before looking at the enciphering procedure, we illustrate the selection of the 
public key. 

Example 10.6. Suppose that an individual begins by picking the prime p = 113 and 
its smallest primitive root r = 3. The choice k = 37 is then made for the integer 
satisfying 2 :s k :s 111. It remains to calculate a = 337 (mod 113). The exponenti
ation can be readily accomplished by the technique of repeated squaring, reducing 
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modulo 113 at each step: 

and so 

31 = 3 (mod 113) 
32 = 9 (mod 113) 
34 = 81 (mod 113) 

38 = 7 (mod 113) 
316 = 49 (mod 113) 
332 = 28 (mod 113) 

a= 337 = 31 · 34 · 332 = 3 · 81 · 28 = 6304 = 24 (mod 113) 

The triple (113, 3, 24) serves as the public key, while the integer 37 becomes the secret 
deciphering key. 

Here is how ElGamal encryption works. Assume that a message is to be sent 
to someone who has public key (p, r, a) and also the corresponding private key k. 
The transmission is a string of integers smaller than p. Thus, the literal message is 
first converted to its numerical equivalent M by some standard convention such as 
letting a= 00, b = 01, ... , z = 25. If M::::: p, then M is split into successive blocks, 
each block containing the same (even) number of digits. It may be necessary to add 
extra digits (say, 25 = z), to fill out the final block. 

The blocks of digits are encrypted separately. If B denotes the first block, then 
the sender-who is aware of the recipient's public key-arbitrarily selects an integer 
2 _:::: j _:::: p - 2 and computes two values: 

C1 = rj (modp) and C2 = Baj (modp), 0 _:::: C1, C2 _:::: p -1 

The numerical ciphertext associated with the block B is the pair of integers ( C 1, C2). 

It is possible, in case greater security is needed, for the choice of j to be changed 
from block to block. 

The recipient of the ciphertext can recover the block B by using the secret 
key k. All that needs to be done is to evaluate Cf-1-k (mod p) and then P = 
C2Cf-1-k (mod p); for 

P = c2cf-1-k = (Baj)(rjl- 1-k 

= B(rk)\rj(p-1)-jk) 

= B(rP-1)j 

=B (modp) 

where the final congruence results from the Fermat identity rP- 1 = 1 (mod p). The 
main point is that the decryption can be carried out by someone who knows the value 
ofk. 

Let us work through the steps of the encryption algorithm, using a reasonably 
small prime number for simplicity. 

Example 10.7. Assume that the user wishes to deliver the message 

SELL NOW 

to a person who has the secret key k = 15 and public encryption key (p, r, a)= 
(43, 3, 22), where 22 = 315 (mod 43). The literal plaintext is first converted to the 
string of digits 

A1 = 18041111131422 
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To create the ciphertext, the sender selects an integer j satisfying 2:::: j :::: 41, perhaps 
j = 23, and then calculates 

rj = 323 = 34 (mod 43) and aj = 2223 = 32 (mod 43) 

Thereafter, the product aj B = 32B (mod 43) is computed for each two-digit block B 
of M. The initial block, for instance, is encrypted as 32.18 = 17 (mod 43 ). The entered 
digital message M is transformed in this way into a new string 

M' = 17420808291816 

The ciphertext that goes forward takes the form 

(34, 17)(34,42)(34,08)(34,08)(34,29)(34, 18)(34, 16) 

On the arrival of the message, the recipient uses the secret key to obtain 

(rjl-i-k = 3427 = 39 (mod 43) 

Each second entry in the ciphertext pairs is decrypted on multiplication by this last 
value. The first letter, S, in the sender's original message would be recovered from the 
congruence 18 = 39 · 17 (mod 43), and so on. 

An important aspect of a cryptosystem should be its ability to confirm the 
integrity of a message; because everyone knows how to send a message, the recipient 
must be sure that the encryption was really issued by an authorized person. The usual 
method of protecting against possible third-party forgeries is for the person sending 
the message to have a digital "signature," the electronic analog of a handwritten 
signature.lt should be difficult to tamper with the digital signature, but its authenticity 
should be easy to recognize. Unlike a handwritten signature, it should be possible 
to vary a digital signature from one communication to another. 

A feature of the ElGamal cryptosystem is an efficient procedure for authenti
cating messages. Consider a user of the system who has public key (p, r, a), private 
key k, and encrypted message M. The first step toward supplying a signature is to 
choose an integer 1 ~ j ~ p - 1 where gcd (j , p - 1) = 1. Taking a piece of the 
plaintext message M -for instance, the first block B-the user next computes 

e = rj (mod p ), 0 ~ j ~ p - 1 

and then obtains a solution of the linear congruence 

jd + ke = B (mod p- 1), 0 ~ d ~ p- 2 

The solution d can be found using the Euclidean algorithm. The pair of integers 
(e, d) is the required digital signature appended to the message. It can be created 
only by someone aware of the private key k, the random integer j, and the message 
M. 

The recipient uses the sender's public key (p, r, a) to confirm the purported 
signature. It is simply a matter of calculating the two values 

V1 =aced (mod p), Vz = r 8 (mod p), 0 ~ v,, Vz ~ p- 1 

The signature is accepted as legitimate when V1 = V2. That this equality should 
take place follows from the congruence 

V, =aced= (rk)c(rj)d 
=rkc+jd 

=r8 = Vz (mod p) 
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Notice that the personal identification does not require the recipient to know the 
sender's private key k. 

Example 10.8. The person having public key (43, 3, 22) and private key k = 15 wants 
to sign and reply to the message SELL NOW. This is carried out by first choosing an 
integer 0 :::: j :::: 42 with gcd(j, 42) = 1, say j = 25. If the first block of the encoded 
reply is B = 13, then the person calculates 

c = 325 = 5 (mod 43) 

and thereafter solves the congruence 

25d = 13 - 5 · 15 (mod 42) 

for the value d = 16 (mod 42). The digital signature attached to the reply consists of 
the pair (5, 16). On its arrival, the signature is confirmed by checking the equality of 
the integers Vi and Vz: 

vi = 225 . 5i6 = 39 . 40 = 12 (mod 43) 
V2 = 3i3 = 12 (mod 43) 

PROBLEMS 10.3 

1. The message REPLY TODAY is to be encrypted in the ElGamal cryptosystem and 
forwarded to a user with public key (47, 5, 10) and private key k = 19. 

(a) If the random integer chosen for encryption is j = 13, determine the ciphertext. 
(b) Indicate how the ciphertext can be decrypted using the recipient's private key. 

2. Suppose that the following ciphertext is received by a person having ElGamal public 
key (71, 7, 32) and private key k = 30: 

(56, 45) 
(56, 05) 

(56, 38) 
(56, 27) 

Obtain the plaintext message. 

(56, 29) 
(56, 31) 

(56, 03) 
(56, 38) 

(56, 67) 
(56, 29) 

3. The message NOT NOW (numerically 131419131422) is to be sent to a user of the 
ElGamal system who has public key (37, 2, 18) and private key k = 17. If the integer 
j used to construct the ciphertext is changed over successive four-digit blocks from 
j = 13 to j = 28 to j = 11, what is the encrypted message produced? 

4. Assume that a person has ElGamal public key (2633, 3, 1138) and private key k = 965. 
If the person selects the random interger j = 583 to encrypt the message BEWARE OF 
THEM, obtain the resulting ciphertext. 

[Hint: 3583 = 1424 (mod 2633), 1138583 = 97 (mod 2633).] 

5. (a) A person with public key (31, 2, 22) and private key k = 17 wishes to sign a message 
whose first plaintext block is B = 14. If 13 is the integer chosen to construct the 
signature, obtain the signature produced by the ElGamal algorithm. 

(b) Confirm the validity of this signature. 



CHAPTER 

11 
NUMBERS OF SPECIAL FORM 

In most sciences one generation tears down what another has built and what 
one has established another undoes. In Mathematics alone each generation 

builds a new story to the old structure. 
HERMANN HANKEL 

11.1 MARIN MERSENNE 

The earliest instance we know of a regular gathering of mathematicians is the group 
held together by an unlikely figure-the French priest Father Marin Mersenne (1588-
1648). The son of a modest farmer, Mersenne received a thorough education at 
the Jesuit College of LaFleche. In 1611, after two years studying theology at the 
Sorbonne, he joined the recently founded Franciscan Order of Minims. Mersenne 
entered the Minim Convent in Paris in 1619 where, except for short trips, he remained 
for the rest of his life. 

Mersenne lamented the absence of any sort of formal organization to which 
scholars might resort. He responded to this need by making his own rooms at the 
Minim convent available as a meeting place for those drawn together by common 
interests, eager to discuss their respective discoveries and hear of similar activity 
elsewhere. The learned circle he fostered-composed mainly of Parisian mathemati
cians and scientists but augmented by colleagues passing through the city-seems to 
have met almost continuously from 1635 until Mersenne's death in 1648. At one of 
these meetings the precocious 14-year-old Blaise Pascal distributed his handbill 
Essay pour les coniques containing his famous "mystic hexagram" theorem; 
Descartes could only grumble that he could not "pretend to be interested in the 
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work of a boy." After Mersenne's death, the august sessions continued to be held 
at private homes in and around Paris, including Pascal's. It is customary to regard 
the Academie Royale des Sciences, chartered in 1666, as the more or less direct 
successor of these informal gatherings. 

From 1625 onwards, Mersenne made it his business to become acquainted with 
everyone of note in the European intellectual world. He carried out this plan through 
an elaborate network of correspondence which lasted over 20 years. In essence 
he became an individual clearinghouse of mathematical and scientific information, 
trading news of current advances in return for more news. It was Mersenne who, 
following a 1645 visit to Torricelli in Italy, made widely known that the physicist's 
demonstration of atmospheric pressure through the rising of a column of mercury 
in a vacuum tube. Mersenne's communications, dispersed over the Continent by 
passing from hand to hand, were the vital link between isolated members of the 
emerging scientific community at a time when the publication of learned journals 
still lay in the future. 

After Mersenne's death letters from 78 correspondents scattered over Western 
Europe were found in his Parisian quarters. Among his correspondents were Huygens 
in Holland, Torricelli and Galileo in Italy, Pell and Hobbes in England, and the 
Pascals, father and son, in France. He had also served as the main channel of commu
nication between the French number theorists Fermat, Frenicle and Descartes; their 
exchanged letters determined the sorts of problems these three chose to investigate. 

Mersenne was not himself a serious contributor to the subject, rather a remark
able interested person prodding others with questions and conjectures. His own 
queries tended to be rooted in the classical Greek concern with divisibility. For 
instance, in a letter written in 1643, he sent the number 100895598169 to Fermat 
with a request for its factors. (Fermat responded almost immediately that it is the 
product of the two primes 898423 and 112303.) On another occasion he asked for 
a number which has exactly 360 divisors. Mersenne was also interested in whether 
or not there exists a so called "perfect number" with 20 or 21 digits, the underlying 
question really being to find out whether 237 - 1 is prime. Fermat discovered that 
the only prime divisors of 237 - 1 are of the form 74k + 1 and that 223 is such a 
factor, thereby supplying a negative answer to Mersenne. 

Mersenne was the author of various works dealing with the mathematical sci
ences, including Synopsis Mathematica (1626), Traite de /'Harmonie Universelle 
(1636-37) and Universae Geometriae Synopsis (1644). A believer in the new 
Copernican theory of the earth's motion, he was virtually Galileo's representative 
in France. He brought out (1634), under the title Les Mecaniques de Galilee, aver
sion of Galileo's early lectures on mechanics; and, in 1639, a year after its original 
publication, he translated Galileo's Discorsi-a treatise analyzing projectile motion 
and gravitational acceleration-into French. As Italian was little understood abroad, 
Mersenne was instrumental in popularizing Galileo's investigations. It is notable 
that he did this as a faithful member of a Catholic religious order at the height 
of the Church's hostility to Galileo, and its condemnation of his writings. Perhaps 
Mersenne's greatest contribution to the scientific movement lay in his rejection of 
the traditional interpretation of natural phenomena, which had stressed the action of 
"occult" powers, by insisting instead upon purely rational explanations. 
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(David Eugene Smith Collection, Rare Book and 
Manuscript Library, Columbia University) 

11.2 PERFECT NUMBERS 

The history of the theory of numbers abounds with famous conjectures and open 
questions. The present chapter focuses on some of the intriguing conjectures asso
ciated with perfect numbers. A few of these have been satisfactorily answered, but 
most remain unresolved; all have stimulated the development of the subject as a 
whole. 

The Pythagoreans considered it rather remarkable that the number 6 is equal to 
the sum of its positive divisors, other than itself: 

6=1+2+3 

The next number after 6 having this feature is 28; for the positive divisors of 28 are 
found to be 1, 2, 4, 7, 14, and 28, and 

28 = 1 + 2 + 4 + 7 + 14 

In line with their philosophy of attributing mystical qualities to numbers, the 
Pythagoreans called such numbers "perfect." We state this precisely in Definition 
11.1. 

Definition 11.1. A positive integer n is said to be peifect if n is equal to the sum of all 
its positive divisors, excluding n itself. 

The sum of the positive divisors of an integer n, each of them less than n, is given 
by a(n) - n. Thus, the condition "n is perfect" amounts to askingthata(n)- n = n, 
or equivalently, that 

a(n) = 2n 

For example, we have 

a(6) = 1 + 2 + 3 + 6 = 2 · 6 
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and 

a(28) = 1 + 2 + 4 + 7 + 14 + 28 = 2 · 28 

so that 6 and 28 are both perfect numbers. 
For many centuries, philosophers were more concerned with the mystical or 

religious significance of perfect numbers than with their mathematical properties. 
Saint Augustine explains that although God could have created the world all at once, 
He preferred to take 6 days because the perfection of the work is symbolized by 
the (perfect) number 6. Early commentators on the Old Testament argued that the 
perfection of the Universe is represented by 28, the number of days it takes the 
moon to circle the earth. In the same vein, the 8th century theologian Alcuin of York 
observed that the whole human race is descended from the 8 souls on Noah's Ark and 
that this second Creation is less perfect than the first, 8 being an imperfect number. 

Only four perfect numbers were known to the ancient Greeks. Nicomachus in 
his Introductio Arithmeticae (circa 100 A.D.) lists 

p4 = 8128 

He says that they are formed in an "orderly" fashion, one among the units, one among 
the tens, one among the hundreds, and one among the thousands (that is, less than 
10,000). Based on this meager evidence, it was conjectured that 

1. The nth perfect number Pn contains exactly n digits; and 

2. The even perfect numbers end, alternately, in 6 and 8. 

Both assertions are wrong. There is no perfect number with 5 digits; the next 
perfect number (first given correctly in an anonymous 15th century manuscript) is 

Ps = 33550336 

Although the final digit of P5 is 6, the succeeding perfect number, namely, 

p6 = 8589869056 

also ends in 6, not 8 as conjectured. To salvage something in the positive direction, 
we shall show later that the even perfect numbers do always end in 6 or 8-but not 
necessarily alternately. 

If nothing else, the magnitude of P6 should convince the reader of the rarity of 
perfect numbers. It is not yet known whether there are finitely many or infinitely 
many of them. 

The problem of determining the general form of all perfect numbers dates back 
almost to the beginning of mathematical time.lt was partially solved by Euclid when 
in Book IX of the Elements he proved that if the sum 

1 + 2 + 22 + 23 + ... + 2k-! = p 

is a prime number, then 2k-l p is a perfect number (of necessity even). For instance, 
1 + 2 + 4 = 7 is a prime; hence, 4 · 7 = 28 is a perfect number. Euclid's argument 
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makes use of the formula for the sum of a geometric progression 

1 + 2 + 22 + 23 + ... + 2k-l = 2k - 1 

which is found in various Pythagorean texts. In this notation, the result reads as 
follows: If 2k - 1 is prime (k > 1), then n = 2k-1(2k - 1) is a perfect number. 
About 2000 years after Euclid, Euler took a decisive step in proving that all even 
perfect numbers must be of this type. We incorporate both these statements in our 
first theorem. 

Theorem 11.1. If2k- 1 is prime (k > 1), then n = 2k- 1(2k- 1) is perfect and every 
even perfect number is of this form. 

Proof. Let 2k- 1 = p, a prime, and consider the integer n = 2k-i p. Inasmuch as 
gcd(2k-l, p) = 1, the mu1tip1icativity of a (as well as Theorem 6.2) entails that 

a(n) = a(2k-i p) = a(2k-i )a(p) 

= (2k - 1 )(p + 1) 

= (2k- 1)2k = 2n 

making n a perfect number. 
For the converse, assume that n is an even perfect number. We may write n as 

n = 2k-1m, where m is an odd integer and k::::: 2. It follows from gcd(2k-l, m) = 1 
that 

a(n) = a(2k-1m) = a(2k-1)a(m) = (2k- 1)a(m) 

whereas the requirement for a number to be perfect gives 

a(n) = 2n = 2km 

Together, these relations yield 

2km = (2k- 1)a(m) 

which is simply to say that (2k - 1) 12km. But 2k - 1 and 2k are relatively prime, 
whence (2k - 1) I m; say, m = (2k - 1)M. Now the result of substituting this value of 
minto the last-displayed equation and canceling 2k - 1 is that a(m) = 2k M. Because 
m and Mare both divisors of m (with M < m), we have 

2k M = a(m) ::=:: m + M = 2k M 

leading to a(m) = m + M. The implication of this equality is that m has only two 
positive divisors, to wit, M and m itself. It must be that m is prime and M = 1; in other 
words, m = (2k- 1)M = 2k- 1 is a prime number, completing the present proof. 

Because the problem of finding even perfect numbers is reduced to the search 
for primes of the form 2k - 1, a closer look at these integers might be fruitful. One 
thing that can be proved is that if 2k - 1 is a prime number, then the exponent k must 
itself be prime. More generally, we have the following lemma. 

Lemma. If ak - 1 is prime (a > 0, k ::::: 2), then a = 2 and k is also prime. 
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Proof. It can be verified without difficulty that 

ak- 1 =(a- 1)(ak-i + ak-2 +···+a+ 1) 

where, in the present setting, 

ak-i + ak-2 +···+a+ 1 :::_a+ 1 > 1 

Because by hypothesis ak - 1 is prime, the other factor must be 1; that is, a - 1 = 1 
so that a= 2. 

If k were composite, then we could write k = r s, with 1 < r and 1 < s. Thus, 

ak - 1 =(a')' - 1 
=(a' - 1)(ar(s-i) + ar(s-2) + ... +a' + 1) 

and each factor on the right is plainly greater than 1. But this violates the primality of 
ak - 1, so that by contradiction k must be prime. 

For p = 2, 3, 5, 7, the values 3, 7, 31, 127 of 2P- 1 are primes, so that 

are all perfect numbers. 

2(22 - 1) = 6 

22(23 - 1) = 28 

24(25 - 1) = 496 

26(27 - 1) = 8128 

Many early writers erroneously believed that 2P - 1 is prime for every choice of 
the prime number p. But in 1536, Hudalrichus Regius in a work entitled Utriusque 
Arithmetices exhibits the correct factorization 

211 - 1 = 2047 = 23 . 89 

If this seems a small accomplishment, it should be realized that his calculations 
were in all likelihood carried out in Roman numerals, with the aid of an abacus (not 
until the late 16th century did the Arabic numeral system win complete ascendancy 
over the Roman one). Regius also gave p = 13 as the next value of p for which the 
expression 2P - 1 is a prime. From this, we obtain the fifth perfect number 

212(213 - 1) = 33550336 

One of the difficulties in finding further perfect numbers was the unavailability of 
tables of primes. In 1603, Pietro Cataldi, who is remembered chiefly for his invention 
of the notation for continued fractions, published a list of all primes less than 5150. 
By the direct procedure of dividing by all primes not exceeding the square root of a 
number, Cataldi determined that 217 - 1 was prime and, in consequence, that 

216(217 - 1) = 8589869056 

is the sixth perfect number. 
A question that immediately springs to mind is whether there are infinitely many 

primes of the type 2P- 1, with p a prime. If the answer were in the affirmative, 
then there would exist an infinitude of (even) perfect numbers. Unfortunately, this 
is another famous unresolved problem. 
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This appears to be as good a place as any at which to prove our theorem on the 
final digits of even perfect numbers. 

Theorem 11.2. An even perfect number n ends in the digit 6 or 8; equivalently, either 
n = 6 (mod 10) or n = 8 (mod 10). 

Proof. Being an even perfect number, n may be represented as n = 2k-I (2k- 1), 
where 2k - 1 is a prime. According to the last lemma, the exponent k must also be 
prime. If k = 2, then n = 6, and the asserted result holds. We may therefore confine 
our attention to the case k > 2. The proof falls into two parts, according as k takes the 
form 4m + 1 or 4m + 3. 

If k is of the form 4m + 1, then 

n = 24m(24m+l - 1) 

= 28m+i _24m= 2. 162m_ 16m 

A straightforward induction argument will make it clear that 16t = 6 (mod 1 0) for any 
positive integer t. Utilizing this congruence, we get 

n = 2 · 6 - 6 = 6 (mod 10) 

Now, in the case in which k = 4m + 3, 

n = 24m+2(24m+3- 1) 

= 28m+5 _ 24m+2 = 2. 162m+! _ 4. 16m 

Falling back on the fact that 16t = 6 (mod 10), we see that 

n = 2 · 6-4 · 6 = -12 = 8 (mod 10) 

Consequently, every even perfect number has a last digit equal to 6 or to 8. 

A little more argument establishes a sharper result, namely, that any even perfect 
number n = 2k-1(2k - 1) always ends in the digits 6 or 28. Because an integer is 
congruent modulo 100 to its last two digits, it suffices to prove that, if k is of the 
form 4m + 3, then n = 28 (mod 100). To see this, note that 

2k-l = 24m+2 =16m· 4 = 6 · 4 = 4 (mod 10) 

Moreover, for k > 2, we have 4 I 2k-l, and therefore the number formed by the last 
two digits of 2k-l is divisible by 4. The situation is this: The last digit of 2k-l is 4, 
and 4 divides the last two digits. Modulo 100, the various possibilities are 

2k-l = 4, 24, 44, 64, or 84 

But this implies that 

2k- 1 = 2 · 2k-l - 1 = 7, 47, 87, 27, or 67 (mod 100) 

whence 
n = 2k-1(2k- 1) 

= 4 · 7, 24 · 47,44 · 87,64 · 27, or 84 · 67 (mod 100) 

It is a modest exercise, which we bequeath to the reader, to verify that each of the 
products on the right -hand side of the last congruence is congruent to 28 modulo 100. 
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PROBLEMS 11.2 

1. Prove that the integer n = 210(211 - 1) is not a perfect number by showing that 
a(n) =I= 2n. 
[Hint: 2" - 1 = 23 · 89.] 

2. Verify each of the statements below: 
(a) No power of a prime can be a perfect number. 
(b) A perfect square cannot be a perfect number. 
(c) The product of two odd primes is never a perfect number. 

[Hint: Expand the inequality (p- l)(q- 1) > 2 to get pq > p + q + 1.] 
3. If n is a perfect number, prove that Ld 1 n 1 / d = 2. 
4. Prove that every even perfect number is a triangular number. 
5. Given that n is an even perfect number, for instance n = 2k-1(2k- 1), show that the 

integer n = 1 + 2 + 3 + · · · + (2k- 1) and also that ¢(n) = 2k-1(2k-I - 1). 
6. For an even perfect number n > 6, show the following: 

(a) The sum of the digits of n is congruent to 1 modulo 9. 
[Hint: The congruence 26 = 1 (mod 9) and the fact that any prime p 2: 5 is of the 
form 6k + 1 or 6k + 5 imply that n = 2P-1(2P - 1) = 1 (mod 9).] 

(b) The integer n can be expressed as a sum of consecutive odd cubes. 
[Hint: Use Section 1.1, Problem l(e) to establish the identity below for all k 2: 1: 

7. Show that no proper divisor of a perfect number can be perfect. 
[Hint: Apply the result of Problem 3.] 

8. Find the last two digits of the perfect number 

9. If a(n) = kn, where k 2: 3, then the positive integer n is called a k-perfect number 
(sometimes, multiply perfect). Establish the following assertions concerning k-perfect 
numbers: 
(a) 523,776 = 29 · 3 · 11 · 31 is 3-perfect. 

30,240 = 25 · 33 · 5 · 7 is 4-perfect. 
14,182,439,040 = 27 · 34 · 5. 7-112 ·17. 19 is 5-perfect. 

(b) If n is a 3-perfect number and 3 X n, then 3n is 4-perfect. 
(c) If n is a 5-perfect number and 5 X n, then 5n is 6-perfect. 
(d) If 3n is a 4k-perfect number and 3 X n, then n is 3k-perfect. 
For each k, it is conjectured that there are only finitely many k-perfect numbers. The 
largest one discovered has 558 digits and is 9-perfect. 

10. Show that 120 and 672 are the only 3-perfect numbers of the form n = 2k · 3 · p, where 
p is an odd prime. 

11. A positive integer n is multiplicatively perfect if n is equal to the product of all its positive 
divisors, excluding n itself; in other words, n2 = ITd 1 n d. Find all multiplicatively perfect 
numbers. 
[Hint: Notice that n2 = n r(n)/2 .] 

12. (a) If n > 6 is an even perfect number, prove that n = 4 (mod 6). 
[Hint: 2P-i = 1 (mod 3) for an odd prime p.] 

(b) Prove that if n =I= 28 is an even perfect number, then n = 1 or -1 (mod 7). 
13. For any even perfect number n = 2k-1(2k - 1), show that 2k I a(n2 ) + 1. 
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14. Numbers n such that a(a(n)) = 2n are called superperfect numbers. 
(a) If n = 2k with 2k+i - 1 a prime, prove that n is superperfect; hence, 16 and 64 are 

superperfect. 
(b) Find all even perfect numbers n = 2k-1(2k- 1) which are also superperfect. 

[Hint: First establish the equality a(a(n)) = 2k(2k+1 - 1).] 
15. The harmonic mean H (n) of the divisors of a positive integer n is defined by the formula 

1 1 1 
H(n) - -r(n) f; d 

Show that if n is a perfect number, then H (n) must be an integer. 
[Hint: Observe that H(n) = n-r(n)ja(n).] 

16. The twin primes 5 and 7 are such that one half their sum is a perfect number. Are there 
any other twin primes with this property? 
[Hint: Given the twin primes p and p + 2, with p > 5, !<P + p + 2) = 6k for some 
k > 1.] 

17. Prove that if 2k - 1 is prime, then the sum 

2k-i + 2k + 2k+i + ... + 22k-2 

will yield a perfect number. For instance, 23 - 1 is prime and 22 + 23 + 24 = 28, which 
is perfect. 

18. Assuming that n is an even perfect number, say n = 2k-i (2k - 1 ), prove that the product 
of the positive divisors of n is equal to nk; in symbols, 

nd=nk 
din 

19. If n 1, n2 , · · ·, n, are distinct even perfect numbers, establish that 

¢(n,nz · · · n,) = 2'- 1¢(n,)¢(nz) · · · ¢(n,) 

[Hint: See Problem 5.] 
20. Given an even perfect number n = 2k-1(2k- 1), show that 

¢(n) = n- 22k-2 

11.3 MERSENNE PRIMES AND AMICABLE NUMBERS 

It has become traditional to call numbers of the form 

n~l 

Mersenne numbers after Father Marin Mersenne who made an incorrect but provoca
tive assertion concerning their primality. Those Mersenne numbers that happen to 
be prime are said to be Mersenne primes. By what we proved in Section 11.2, the 
determination of Mersenne primes Mn-and, in tum, of even perfect numbers-is 
narrowed down to the case in which n is itself prime. 

In the preface of his Cogitata Physica-Mathematica (1644), Mersenne stated 
that Mp is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127,257 and composite for 
all other primes p < 257. It was obvious to other mathematicians that Mersenne 
could not have tested for primality all the numbers he had announced; but neither 
could they. Euler verified (1772) that M31 was prime by examining all primes up to 



226 ELEMENTARY NUMBER THEORY 

46339 as possible divisors, but M67 , M127 , and M257 were beyond his technique; in 
any event, this yielded the eighth perfect number 

230(231 - 1) = 2305843008139952128 

It was not until 1947, after tremendous labor caused by unreliable desk calcu
lators, that the examination of the prime or composite character of M P for the 55 
primes in the range p ~ 257 was completed. We know now that Mersenne made 
five mistakes. He erroneously concluded that M 67 and M257 are prime and excluded 
M61, M89 , and M107 from his predicted list of primes. It is rather astonishing that 
over 300 years were required to set the good friar straight. 

All the composite numbers Mn with n ~ 257 have now been completely fac
tored. The most difficult factorization, that of M 251 , was obtained in 1984 after a 
32-hour search on a supercomputer. 

An historical curiosity is that, in 1876, Edouard Lucas worked a test whereby 
he was able to prove that the Mersenne number M 67 was composite; but he could 
not produce the actual factors. 

Lucas was the first to devise an efficient "primality test"; that is, a procedure that 
guarantees whether a number is prime or composite without revealing its factors, if 
any. His primality criteria for the Mersenne and Fermat numbers were developed 
in a series of 13 papers published between January of 1876 and January of 1878. 
Despite an outpouring of research Lucas never obtained a major academic position 
in his native France, instead spending his career in various secondary schools. A 
freak, unfortunate accident led to Lucas's death from infection at the early age of 
49: a piece of a plate dropped at a banquet flew up and gashed his cheek. 

At the October 1903 meeting of the American Mathematical Society, the 
American mathematician Frank Nelson Cole had a paper on the program with the 
somewhat unassuming title "On the Factorization of Large Numbers." When called 
upon to speak, Cole walked to a board and, saying nothing, proceeded to raise the 
integer 2 to the 67th power; then he carefully subtracted 1 from the resulting number 
and let the figure stand. Without a word he moved to a clean part of the board and 
multiplied, longhand, the product 

193,707,721 X 761,838,257,287 

The two calculations agreed. The story goes that, for the first and only time on record, 
this venerable body rose to give the presenter of a paper a standing ovation. Cole took 
his seat without having uttered a word, and no one bothered to ask him a question. 
(Later, he confided to a friend that it took him 20 years of Sunday afternoons to find 
the factors of M67.) 

In the study of Mersenne numbers, we come upon a strange fact: When each of 
the first four Mersenne primes (namely, 3, 7, 31, and 127) is substituted for n in the 
formula 2n - 1, a higher Mersenne prime is obtained. Mathematicians had hoped 
that this procedure would give rise to an infinite set of Mersenne primes; in other 
words, the conjecture was that if the number Mn is prime, then MM. is also a prime. 
Alas, in 1953 a high-speed computer found the next possibility 

MM = 2M13 - 1 = 28191 - 1 
13 

(a number with 2466 digits) to be composite. 
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There are various methods for determining whether certain special types of 
Mersenne numbers are prime or composite. One such test is presented next. 

Theorem 11.3. If p and q = 2p + 1 are primes, then either q I M P or q I M P + 2, but 
not both. 

Proof. With reference to Fermat's theorem, we know that 

2q-I- 1 = 0 (mod q) 

and, factoring the left-hand side, that 

(2(q-i)/Z - 1)(2(q-l)/Z + 1) = (2P - 1)(2P + 1) 

= 0 (mod q) 

What amounts to the same thing: 

Mp(Mp + 2) = 0 (mod q) 

The stated conclusion now follows directly from Theorem 3.1. We cannot have both 
q I M P and q I M P + 2, for then q I 2, which is impossible. 

A single application should suffice to illustrate Theorem 11.3: If p = 23, then 
q = 2p + 1 = 47 is also a prime, so that we may consider the case of M23 . The 
question reduces to one of whether 471 M 23 or, to put it differently, whether 223 = 
1 (mod 47). Now, we have 

223 = 2\25)4 = 23( -15)\mod 47) 

But 

( -15)4 = (225)2 = ( -10)2 = 6 (mod 47) 

Putting these two congruences together, we see that 

223 = 23 . 6 = 48 = 1 (mod 47) 

whence M23 is composite. 
We might point out that Theorem 11.3 is of no help in testing the primality of 

M29, say; in this instance, 59 ,./' M29, but instead 59 I M29 + 2. 
Of the two possibilities q I M P or q I M P + 2, is it reasonable to ask: What 

conditions on q will ensure that q I M P? The answer is to be found in Theorem 11.4. 

Theorem 11.4. If q = 2n + 1 is prime, then we have the following: 

(a) q I Mn, provided that q = 1 (mod 8) or q = 7 (mod 8). 
(b) q I Mn + 2, provided that q = 3 (mod 8) or q = 5 (mod 8). 

Proof. To say that q I Mn is equivalent to asserting that 

iq-i)/Z = 2n = 1 (mod q) 

In terms of the Legendre symbol, the latter condition becomes the requirement that 



228 ElEMENTARY NUMBER THEORY 

(2/q) = 1. But according to Theorem 9.6, (2/q) = 1 when we have q = 1 (mod 8) or 
q = 7 (mod 8). The proof of (b) proceeds along similar lines. 

Let us consider an immediate consequence of Theorem 11.4. 

Corollary. If p and q = 2p + 1 are both odd primes, with p = 3 (mod 4 ), then q 1 M P. 

Proof. An odd prime p is either of the form 4k + 1 or 4k + 3. If p = 4k + 3, then 
q = 8k + 7 and Theorem 11.4 yields q 1 Mp. In the case in which p = 4k + 1, q = 
8k + 3 so that q X Mp. 

The following is a partial list of those prime numbers p = 3 (mod 4) where 
q = 2p + 1 is also prime: p = 11, 23, 83, 131, 179, 191,239,251. In each instance, 
M P is composite. 

Exploring the matter a little further, we next tackle two results of Fermat that 
restrict the divisors of M P. The first is Theorem 11.5. 

Theorem 11.5. If p is an odd prime, then any prime divisor of Mp is of the form 
2kp + 1. 

Proof. Let q be any prime divisor of Mp, so that 2P = 1 (mod q). If 2 has order k 
modulo q (that is, if k is the smallest positive integer that satisfies 2k = 1 (mod q) ), then 
Theorem 8.1 tells us that kIp. The case k = 1 cannot arise; for this would imply that 
q I 1, an impossible situation. Therefore, because both k I p and k > 1, the primality of 
p forces k = p. 

In compliance with Fermat's theorem, we have 2q-i = 1 (mod q), and therefore, 
thanks to Theorem 8.1 again, k I q - 1. Knowing that k = p, the net result is p I q - 1. 
To be definite, let us put q - 1 = pt; then q = pt + 1. The proof is completed by 
noting that if t were an odd integer, then q would be even and a contradiction occurs. 
Hence, we must have q = 2kp + 1 for some choice of k, which gives q the required 
form. 

As a further sieve to screen out possible divisors of Mp, we cite the following 
result. 

Theorem 11.6. If p is an odd prime, then any prime divisor q of M P is of the form 
q = ±1 (mod 8). 

Proof. Suppose that q is a prime divisor of M P, so that 2P = 1 (mod q ). According to 
Theorem 11.5, q is of the form q = 2kp + 1 for some integer k. Thus, using Euler's 
criterion, (2/q) = 2(q-l)/2 = 1 (mod q), whence (2/q) = 1. Theorem 9.6 can now be 
brought into play again to conclude that q = ±1 (mod 8). 

For an illustration of how these theorems can be used, one might look at M17 • 

Those integers of the form 34k + 1 that are less than 362 < ./M17 are 

35,69, 103,137,171,205,239,273,307,341 
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Because the smallest (nontrivial) divisor of M 17 must be prime, we need only consider 
the primes among the foregoing 10 numbers; namely, 

103, 137,239, 307 

The work can be shortened somewhat by noting that 307 ¢. ± 1 (mod 8), and therefore 
we may delete 307 from our list. Now either M 17 is prime or one of the three remaining 
possibilities divides it. With a little calculation, we can check that M17 is divisible 
by none of 103, 137, and 239; the result: M17 is prime. 

After giving the eighth perfect number 230(231 - 1), Peter Barlow, in his book 
Theory of Numbers (published in 1811 ), concludes from its size that it "is the greatest 
that ever will be discovered; for as they are merely curious, without being useful, it is 
not likely that any person will ever attempt to find one beyond it." The very least that 
can be said is that Barlow underestimated obstinate human curiosity. Although the 
subsequent search for larger perfect numbers provides us with one of the fascinating 
chapters in the history of mathematics, an extended discussion would be out of place 
here. 

It is worth remarking, however, that the first 12 Mersenne primes (hence, 12 
perfect numbers) have been known since 1914. The 11th in order of discovery, 
namely, M89 , was the last Mersenne prime disclosed by hand calculation; its primality 
was verified by both Powers and Cunningham in 1911, working independently and 
using different techniques. The prime M127 was found by Lucas in 1876 and for the 
next 75 years was the largest number actually known to be a prime. 

Calculations whose mere size and tedium repel the mathematician are just grist 
for the mill of electronic computers. Starting in 1952, 22 additional Mersenne primes 
(all huge) have come to light. The 25th Mersenne prime, M21701 , was discovered in 
1978 by two 18-year-old high school students, Laura Nickel and Curt Noll, using 
440 hours on a large computer. A few months later, Noll confirmed that M23209 is 
also prime. With the advent of much faster computers, even this record prime did 
not stand for long. 

During the last 10 years, a flurry of computer activity confirmed the primality of 
nine more Mersenne numbers, each in turn becoming the largest number currently 
known to be prime. (In the never-ending pursuit of bigger and bigger primes, the 
record holder has usually been a Mersenne number.) Forty-one Mersenne primes 
have been identified. The most recent is M24036583, discovered in 2004.1t has 7235733 
decimal digits, nearly a million more than the previous largest known prime, the 
6320430-digit M2o9960ll· The year-long search for M24036583 used the spare time of 
several hundred thousand volunteers and their computers, each assigned a different 
set of candidates to test for primality. The newest champion prime gave rise to the 
41st even perfect number 

p41 = 224036582(224036583 _ 1) 

an immense number of 14591877 digits. 
It is not likely that every prime in the vast expanse p < 24036583 has been 

tested to see if M P is prime. One should be wary, for in 1989 a systematic computer 
search found the overlooked Mersenne prime Muo503 lurking between M86243 and 
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M216091 . What is more probable is that enthusiasts with the time and inclinatio 
forge on through higher values to new records. 

Mersenne number Number of digits Date of discovery 

1 22 -1 unknown 
2 23-1 1 unknown 
3 25 -1 2 unknown 
4 27-1 3 unknown 
5 213-1 4 1456 
6 217-1 6 1588 
7 219-1 6 1588 
8 231 -1 10 1772 
9 261 -1 19 1883 

10 2s9- 1 27 1911 
11 2107- 1 33 1914 
12 2121 _ 1 39 1876 
13 2s21 _ 1 157 1952 
14 26o7 _ 1 183 1952 
15 21219 _ 1 386 1952 
16 22203 _ 1 664 1952 
17 222s1 _ 1 687 1952 
18 23217 _ 1 969 1957 
19 24253 _ 1 1281 1961 
20 24423 _ 1 1332 1961 
21 29689 _ 1 2917 1963 
22 29941 _ 1 2993 1963 
23 211213 _ 1 3376 1963 
24 219937 _ 1 6002 1971 
25 221101 _ 1 6533 1978 
26 2232o9 _ 1 6987 1978 
27 244497 _ 1 13395 1979 
28 2s6243 _ 1 25962 1983 
29 21wso3 _ 1 33265 1989 
30 2132o49 _ 1 39751 1983 
31 2216o91 _ 1 65050 1985 
32 21s6s39 _ 1 227832 1992 
33 2ss9433 _ 1 258716 1994 
34 212sns1 _ 1 378632 1996 
35 21398269 _ 1 420921 1996 
36 22976221 _ 1 895932 1996 
37 23o21377 _ 1 909526 1998 
38 26972593 _ 1 2098960 1999 
39 213466917 _ 1 4059346 2001 
40 2209960 u _ 1 6320430 2003 
41 224036583 _ 1 7235733 2004 

An algorithm frequently used for testing the primality of M Pis the Lucas-Le 
test. It relies on the inductively defined sequence 

s1 =4 sk+I =sf- 2 k?:.l 
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Thus, the sequence begins with the values 4, 14, 194, 37634, .... The basic theorem, 
as perfected by Derrick Lehmer in 1930 from the pioneering results of Lucas, is 
this: For p > 2, Mp is prime if and only if Sp-I = 0 (mod Mp). An equivalent 
formulation is that Mp is prime if and only if Sp-2 = ±2<P+l)/2 (mod Mp). 

A simple example is provided by the Mersenne number M7 = 27 - 1 = 127. 
Working modulo 127, the computation runs as follows: 

Ss = -16 

This establishes that M7 is prime. 
The largest of the numbers on Mersenne's "original" list, the 78-digit M257 , 

was found to be composite in 1930 when Lehmer succeeded in showing that S256 ¢-
0 (mod 257); this arithmetic achievement was announced in print in 1930, although 
no factor of the number was known. In 1952, theN ational Bureau of Standards West
em Automatic Computer (SWAC) confirmed Lehmer's efforts of 20 years earlier. 
The electronic computer accomplished in 68 seconds what had taken Lehmer over 
700 hours using a calculating machine. The smallest prime factor of M257 , namely, 

535006138814359 

was obtained in 1979 and the remaining two factors exhibited in 1980,50 years after 
the composite nature of the number had been revealed. 

For the reader's convenience, we have listed the 41 Mersenne primes, the number 
of digits in each, and its approximate date of discovery. 

Most mathematicians believe that there are infinite! y many Mersenne primes, but 
a proof of this seems hopelessly beyond reach. Known Mersenne primes M P clearly 
become more scarce asp increases. It has been conjectured that about two primes 
Mp should be expected for all primes pin an interval x < p < 2x; the numerical 
evidence tends to support this. 

One of the celebrated problems of number theory is whether there exist any 
odd perfect numbers. Although no odd perfect number has been produced thus far, 
nonetheless, it is possible to find certain conditions for the existence of odd perfect 
numbers. The oldest of these we owe to Euler, who proved that if n is an odd perfect 
number, then 

where p, q1, ..• , q, are distinct odd primes and p =a= 1 (mod 4). In 1937, 
Steuerwald showed that not all {3; 'scan be equal to 1; that is, if n = paqrqi · · · q?: 
is an odd number with p =a= 1 (mod 4), then n is not perfect. Four years later, 
Kanold established that not all {3; 's can be equal to 2, nor is it possible to have one 
{3; equal to 2 and all the others equal to 1. The last few years have seen further 
progress: Hagis and McDaniel (1972) found that it is impossible to have {3; = 3 for 
all i. 

With these comments out of the way, let us prove Euler's result. 
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as 

Theorem 11.7 Euler. If n is an odd perfect number, then 

where the Pi's are distinct odd primes and p 1 = k1 = 1 (mod 4). 

Proof. Let n = p~1 p~2 • • • p~' be the prime factorization of n. Because n is perfect, we 
can write 

Being an odd integer, either n = 1 (mod 4) or n = 3 (mod 4); in any event, 2n = 2 
(mod 4). Thus, a(n) = 2n is divisible by 2, but not by 4. The implication is that one 
of the a(p~' ), say a(p~1 ), must be an even integer (but not divisible by 4), and all the 
remaining a(p~' )'s are odd integers. 

For a given Pi• there are two cases to be considered: Pi = 1 (mod 4) and Pi = 
3 (mod 4). If Pi= 3 = -1 (mod 4), we would have 

a(p~') = 1 + Pi + pf + · · · + p~' 
= 1 + (-1) + (-1)2 + · · · + (-ll• (mod 4) 

= {0 (mod 4) if ki is odd 
- 1 (mod 4) if ki is even 

Because a(p~1 ) = 2 (mod 4), this tells us that p 1 "¢. 3 (mod 4) or, to put it affirma
tively, p 1 = 1 (mod 4). Furthermore, the congruence a(p~') = 0 (mod 4) signifies that 
4 divides a(l1 ), which is not possible. The conclusion: If Pi = 3 (mod 4), where 
i = 2, ... , r, then its exponent ki is an even integer. 

Should it happen that Pi = 1 (mod 4)-which is certainly true fori = 1-then 

a(l') = 1 +Pi+ pf + · · · + P~' 
= 1 + 11 + 12 + · · · + 1 k, (mod 4) 

= ki + 1 (mod 4) 

The condition a(p~1 ) = 2 (mod 4) forces k1 = 1 (mod 4). For the other values of i, 
we know that a(l') = 1 or 3 (mod 4), and therefore ki = 0 or 2 (mod 4); in any case, 
ki is an even integer. The crucial point is that, regardless of whether Pi = 1 (mod 4) 
or p; = 3 (mod 4 ), ki is always even for i t 1. Our proof is now complete. 

In view of the preceding theorem, any odd perfect number n can be expressed 

k 2. 2. 
n = p,~ P/2 ... p/' 

= p~~ (p~2 ... Ph2 
= p~1m2 

This leads directly to the following corollary. 



NUMBERS OF SPECIAL FORM 233 

Corollary. If n is an odd perfect number, then n is of the form 

n = pkmZ 

where pis a prime, p )' m, and p = k = 1 (mod 4); in particular, n = 1 (mod 4). 

Proof. Only the last assertion is not obvious. Because p = 1 (mod 4), we have pk = 
1 (mod 4). Notice that m must be odd; hence, m = 1 or 3 (mod 4), and therefore upon 
squaring, m2 = 1 (mod 4). It follows that 

n = pkm2 = 1 · 1 = 1 (mod 4) 

establishing our corollary. 

Another line of investigation involves estimating the size of an odd perfect 
number n. The classical lower bound was obtained by Turcaninov in 1908: n has at 
least four distinct prime factors and exceeds 2 · 106 . With the advent of electronic 
computers, the lower bound has been improved to n > 10300 . Recent investigations 
have shown that n must be divisible by at least eight distinct primes, the largest of 
which is greater than 107 , and the next largest exceeds 104 ; if 3 )' n, then the number 
of distinct prime factors of n is at least 11. 

Although all of this lends support to the belief that there are no odd perfect 
numbers, only a proof of their nonexistence would be conclusive. We would then 
be in the curious position of having built up a whole theory for a class of numbers 
that did not exist. "It must always," wrote the mathematician Joseph Sylvester in 
1888, "stand to the credit of the Greek geometers that they succeeded in discovering 
a class of perfect numbers which in all probability are the only numbers which are 
perfect." 

Another group of numbers that has had a continuous history extended from the 
early Greeks to the present time comprises the amicable numbers. Two numbers such 
as 220 and 284 are called amicable, or friendly, because they have the remarkable 
property that each number is "contained" within the other, in the sense that each 
number is equal to the sum of all the positive divisors of the other, not counting the 
number itself. Thus, as regards the divisors of 220, 

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 +55 + 110 = 284 

and for 284, 

1 + 2 + 4 + 71 + 142 = 220 

In terms of the a function, amicable numbers m and n (or an amicable pair) are 
defined by the equations 

a(m) -m = n a(n)- n = m 

or what amounts to the same thing: 

a(m)=m+n=a(n) 

Down through their quaint history, amicable numbers have been important in 
magic and astrology, and in casting horoscopes, making talismans, and concocting 
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love potions. The Greeks believed that these numbers had a particular influence 
in establishing friendships between individuals. The philosopher Iamblichus of 
Chalcis (ca. A.D. 250-A.D. 330) ascribed a knowledge of the pair 220 and 284 to the 
Pythagoreans. He wrote: 

They [the Pythagoreans] call certain numbers amicable numbers, adopting virtues and 
social qualities to numbers, as 284 and 220; for the parts of each have the power to 
generate the other .... 

Biblical commentators spotted 220, the lesser of the classical pair, in Genesis 32:14 
as numbering Jacob's present to Esau of200 she-goats and 20 he-goats. According to 
one commentator, Jacob wisely counted out his gift (a "hidden secret arrangement") 
to secure the friendship of Esau. An Arab of the 11th century, El Madschriti of 
Madrid, related that he had put to the test the erotic effect of these numbers by 
giving someone a confection in the shape of the smaller number, 220, to eat, while 
he himself ate the larger, 284. He failed, however, to describe whatever success the 
ceremony brought. 

It is a mark of the slow development of number theory that until the 1630s no 
one had been able to add to the original pair of amicable numbers discovered by 
the Greeks. The first explicit rule described for finding certain types of amicable 
pairs is due to Thabit ibn Qurra, an Arabian mathematician of the 9th century. In a 
manuscript composed at that time, he indicated: 

If the three numbers p = 3 · 2n-i - 1, q = 3 · 2n - 1, and r = 9 · 22n-l - 1 are all 
prime and n :::: 2, then 2n pq and 2nr are amicable numbers. 

It was not until its rediscovery centuries later by Fermat and Descartes that Thabit's 
rule produced the second and third pairs of amicable numbers. In a letter to 
Mersenne in 1636, Fermat announced that 17,296 and 18,416 were an amicable 
pair, and Descartes wrote to Mersenne in 1638 that he had found the pair 9363584 
and 9437056. Fermat's pair resulted from taking n = 4 in Thabit's rule (p = 23, 
q = 47, r = 1151 are all prime) and Descartes' from n = 7 (p = 191, q = 383, 
r = 73727 are all prime). 

In the 1700s, Euler drew up at one clip a list of 64 amicable pairs; two of these 
new pairs were later found to be "unfriendly," one in 1909 and one in 1914. Adrien 
Marie Legendre, in 1830, found another pair, 2172649216 and 2181168896. 

Extensive computer searches have currently revealed more than 50000 amicable 
pairs, some of them running to 320 digits; these include all those with values less than 
1011 • It has not yet been established whether the number of amicable pairs is finite 
or infinite, nor has a pair been produced in which the numbers are relatively prime. 
What has been proved is that each integer in a pair of relatively prime amicable 
numbers must be greater than 1025 , and their product must be divisible by at least 22 
distinct primes. Part of the difficulty is that in contrast with the single formula for 
generating (even) perfect numbers, there is no known rule for finding all amicable 
pairs of numbers. 
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Another inaccessible question, already considered by Euler, is whether there are 
amicable pairs of opposite parity-that is, with one integer even and the other odd. 

"Most" amicable pairs in which both members of the pair are even have their 
sums divisible by 9. A simple example is 220 + 284 = 504 = 0 (mod 9). The small
est known even amicable pair whose sum fails to enjoy this feature is 666030256 
and 696630544. 

PROBLEMS 11.3 

1. Prove that the Mersenne number M13 is a prime; hence, the integer n = 212 (213 - 1) is 
perfect. 
[Hint: Because ../M13 < 91, Theorem 11.5 implies that the only candidates for prime 
divisors of M13 are 53 and 79.] 

2. Prove that the Mersenne number M19 is a prime; hence, the integer n = 218(219 - 1) is 
perfect. 
[Hint: By Theorems 11.5 and 11.6, the only prime divisors to test are 191,457, and 647.] 

3. Prove that the Mersenne number M29 is composite. 
4. A positive integer n is said to be a deficient number if a (n) < 2n and an abundant number 

if a(n) > 2n. Prove each of the following: 
(a) There are infinitely many deficient numbers. 

[Hint: Consider the integers n = pk, where p is an odd prime and k :::: 1.] 
(b) There are infinitely many even abundant numbers. 

[Hint: Consider the integers n = 2k · 3, where k > 1.] 
(c) There are infinitely many odd abundant numbers. 

[Hint: Consider the integers n = 945 · k, where k is any positive integer not divisible 
by 2, 3, 5, or 7. Because 945 = 33 · 5 · 7, it follows that gcd(945, k) = 1 and so 
a(n) = a(945)a(k).] 

5. Assuming that n is an even perfect number and dIn, where 1 < d < n, show that dis 
deficient. 

6. Prove that any multiple of a perfect number is abundant. 
7. Confirm that the pairs of integers listed below are amicable: 

(a) 220 = 22 • 5 · 11 and 284 = 22 • 71. (Pythagoras, 500 B.C.) 
(b) 17296 = 24 • 23 · 47 and 18416 = 24 • 1151. (Fermat, 1636) 
(c) 9363584 = 27 · 191 · 383 and 9437056 = 27 · 73727. (Descartes, 1638) 

8. For a pair of amicable numbers m and n, prove that 

(I: 1;d)-
1 + (r: 1;d)-

1 
= 1 

dim din 

9. Establish the following statements concerning amicable numbers: 
(a) A prime number cannot be one of an amicable pair. 
(b) The larger integer in any amicable pair is a deficient number. 
(c) If m and n are an amicable pair, with m even and n odd, then n is a perfect square. 

[Hint: If p is an odd prime, then 1 + p + p 2 + · · · + pk is odd only when k is an 
even integer.] 

10. In 1886, a 16-year-old Italian boy announced that 1184 = 25 · 37 and 1210 = 2 · 5 · 112 

form an amicable pair of numbers, but gave no indication of the method of discovery. 
Verify his assertion. 
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11. Prove "Thabit's rules" for amicable pairs: If p = 3 · 2n-i - 1, q = 3 · 2n- 1, and r = 
9. 2Zn-i - 1 are all prime numbers, where n :::: 2, then 2n pq and 2nr are an amicable 
pair of numbers. This rule produces amicable numbers for n = 2, 4, and 7, but for no 
other n ::"S 20,000. 

12. By an amicable triple of numbers is meant three integers such that the sum of any 
two is equal to the sum of the divisors of the remaining integer, excluding the number 
itself. Verify that 25 · 3 · 13. 293. 337, 25 · 3 · 5 · 13 · 16561, and 25 · 3 · 13 · 99371 are 
an amicable triple. 

13. A finite sequence of positive integers is said to be a sociable chain if each is the sum of 
the positive divisors of the preceding integer, excluding the number itself (the last integer 
is considered as preceding the first integer in the chain). Show that the following integers 
form a sociable chain: 

14288, 15472, 14536, 14264, 12496 

Only two sociable chains were known until1970, when nine chains of four integers each 
were found. 

14. Prove that 
(a) Any odd perfect number n can be represented in the form n = paz, where p is a 

prime. 
(b) If n =paz is an odd perfect number, then n = p (mod 8). 

15. If n is an odd perfect number, prove that n has at least three distinct prime factors. 
[Hint: Assume that n = pkqZj, where p = k = 1 (mod 4). Use the inequality 2 = 
a(n)/n ::"S [p/(p- 1)][q/(q -1)] to reach a contradiction.] 

16. If the integer n > 1 is a product of distinct Mersenne primes, show that a(n) = 2k for 
somek. 

11.4 FERMAT NUMBERS 

To round out the picture, let us mention another class of numbers that provides 
a rich source of conjectures, the Fermat numbers. These may be considered as a 
special case of the integers of the form 2m + 1. We observe that if 2m + 1 is an 
odd prime, then m = 2n for some n :::: 0. Assume to the contrary that m had an 
odd divisor 2k + 1 > 1, say m = (2k + 1)r; then 2m + 1 would admit the nontrivial 
factorization 

2m + 1 = 2(2k+l)r + 1 = (2')2k+l + 1 

= (2' + 1)(22kr _ 2(2k-i)r + ... + 22r _ 2' + 1) 

which is impossible. In brief, 2m + 1 can be prime only if m is a power of 2. 

Definition 11.2. A Fermat number is an integer of the form 

Fn = 2z" + 1 n::=::O 

If Fn is prime, it is said to be a Fermat prime. 

Fermat, whose mathematical intuition was usually reliable, observed that all the 
integers 

Fo = 3 F4 = 65537 
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are primes and expressed his belief that Fn is prime for each value of n. In writing 
to Mersenne, he confidently announced: "I have found that numbers of the form 
22" + 1 are always prime numbers and have long since signified to analysts the truth 
of this theorem." However, Fermat bemoaned his inability to come up with a proof 
and, in subsequent letters, his tone of growing exasperation suggests that he was 
continually trying to do so. The question was resolved negatively by Euler in 1732 
when he found 

F5 = 225 + 1 = 4294967297 

to be divisible by 641. To us, such a number does not seem very large; but in Fermat's 
time, the investigation of its primality was difficult, and obviously he did not carry 
it out. 

The following elementary proof that 641 I F5 does not explicitly involve division 
and is due to G. Bennett. 

Theorem 11.8. The Fermat number F5 is divisible by 641. 

Proof. We begin by putting a = 27 and b = 5, so that 

1 + ab = 1 + 27 · 5 = 641 

It is easily seen that 

1 + ab - b4 = 1 + (a - b3)b = 1 + 3b = 24 

But this implies that 

Fs = 225 + 1 = 232 + 1 

= 24a 4 + 1 

= (1 + ab- b4)a4 + 1 

= (1 + ab)a4 + (1 - a 4b4) 

= (1 + ab)[a4 + (1 - ab)(l + a2b2)] 

which gives 6411 Fn. 

To this day it is not known whether there are infinitely many Fermat primes 
or, for that matter, whether there is at least one Fermat prime beyond F4 . The best 
"guess" is that all Fermat numbers Fn > F4 are composite. 

Part of the interest in Fermat primes stems from the discovery that they have a 
remarkable connection with the ancient problem of determining all regular polygons 
that can be constructed with ruler and compass alone (where the former is used only 
to draw straight lines and the latter only to draw arcs). In the seventh and last section 
of the Disquisitiones Arithmeticae, Gauss proved that a regular polygon of n sides 
is so constructible if and only if either 

n=2k or n=2kPlP2···Pr 

where k ~ 0 and P1, p2, ... , Pr are distinct Fermat primes. The construction of 
regular polygons of2k, 2k . 3, 2k . 5 and 2k · 15 sides had been known since the time 
of the Greek geometers. In particular, they could construct regular n-sided polygons 
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for n = 3, 4, 5, 6, 8, 10, 12, 15, and 16. What no one suspected before Gauss was 
that a regular 17-sided polygon can also be constructed by ruler and compass. Gauss 
was so proud of his discovery that he requested that a regular polygon of 17 sides be 
engraved on his tombstone; for some reason, this wish was never fulfilled, but such 
a polygon is inscribed on the side of a monument to Gauss erected in Brunswick, 
Germany, his birthplace. 

A useful property of Fermat numbers is that they are relatively prime to each 
other. 

Theorem 11.9. For Fermat numbers Fn and Fm, where m > n ~ 0, gcd(Fm, Fn) = 1. 

Proof. Put d = gcd(Fm, Fn). Because Fermat numbers are odd integers, d must be 
odd. If we set x = 22" and k = 2m-n, then 

Fm - 2 (22")2m-n - 1 

Fn 22" + 1 

xk- 1 k-1 k-2 
=--=x -x +···-1 

x+1 

whence Fn I (Fm - 2). From d I Fn, it follows that d I (Fm - 2). Now use the fact that 
d I Fm to obtain d 12. But dis an odd integer, and sod= 1, establishing the result 
claimed. 

This leads to a pleasant little proof of the infinitude of primes. We know that 
each of the Fermat numbers F0 , F1, ... , Fn is divisible by a prime that, according 
to Theorem 11.9, does not divide any of the other Fk. Thus, there are at least n + 1 
distinct primes not exceeding Fn. Because there are infinitely many Fermat numbers, 
the number of primes is also infinite. 

In 1877, the Jesuit priest T. Pepin devised the practical test (Pepin's test) for 
determining the primality of Fn that is embodied in the following theorem. 

Theorem 11.10 Pepin's test. For n ~ 1, the Fermat number Fn = 22" + 1 is prime 
if and only if 

3(F,-l)/2 = -1 (mod Fn) 

Proof. First let us assume that 

3(F,-l)/2 = -1 (mod Fn) 

Upon squaring both sides, we get 

3F,-i = 1 (mod Fn) 

The same congruence holds for any prime p that divides Fn: 

3F,-i = 1 (mod p) 

Now let k be the order of 3 modulo p. Theorem 8.1 indicates that k I Fn - 1, or in other 
words, that k I 22"; therefore k must be a power of 2. 
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It is not possible that k = 2' for any r ::"S 2n - 1. For if this were so, repeated 
squaring of the congruence 3k = 1 (mod p) would yield 

322"-' = 1 (mod p) 

or, what is the same thing, 

3(F,-i)f2 = 1 (mod p) 

We would then arrive at 1 = -1 (mod p ), resulting in p = 2, which is a contradiction. 
Thus the only possibility open to us is that 

k = 22" = Fn -1 

Fermat's theorem tells us now that k ::"S p - 1, which means, in turn, that Fn = 
k + 1 ::"S p. Because pI Fn, we also have p ::"S Fn. Together these inequalities mean 
that Fn = p, so that Fn is a prime. 

On the other hand, suppose that Fn, n :::: 1, is prime. The Quadratic Reciprocity 
Law gives 

(3/ Fn) = (Fn/3) = (2/3) = -1 

when we use the fact that Fn = ( -1)2" + 1 = 2 (mod 3). Applying Euler's Criterion, 
we end up with 

3(F.-I)/2 = -1 (mod Fn) 

Let us demonstrate the primality of F3 = 257 using Pepin's test. Working mod
ulo 257, we have 

so that F3 is prime. 

3(F3-l)j2 = 3128 = 3\35)25 

= 27(-14)25 

= 27 . 1424( -14) 

= 27(17)(-14) 

= 27 · 19 = 513 = -1 (mod 257) 

We have already observed that Euler proved the Fermat number F5 to be com
posite, with the factorization F5 = 232 + 1 = 641 · 6700417. As for F6, in 1880, 
F. Landry announced that 

F6 = 264 + 1 
=274177·67280421310721 

This accomplishment is all the more remarkable when we consider that Landry 
was 82 years old at the time. Landry never published an account of his work on 
factoring F6, but it is unlikely that he resorted to the process of trial division; for, 
several years earlier, he had estimated that any attempt to show the primality of F6 
by testing numbers of the form 128k + 1 could take up to 3000 years. 

In 1905, J. C. Morehead and A. E. Western independently performed Pepin's 
test on F7 and communicated its composite character almost simultaneously. It took 
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66 years, untill971, before Brillhart and Morrison discovered the prime factorization 

F7 = 2128 + 1 

= 59649589127497217-5704689200685129054721 

(The possibility of arriving at such a factorization without recourse to fast computers 
with large memories is remote.) Morehead and Western carried out (in 1909) a 
similar calculation for the compositeness of F8, each doing half the work; but the 
actual factors were not found until1980, when Brent and Pollard showed the smallest 
prime divisor of F8 to be 

1238926361552897 

The other factor of F8 is 62 digits long, and shortly afterward was shown to be prime. 
A large Fn to which Pepin's test has been applied is F14 , a number of 4933 digits; 
this Fermat number was determined to be composite by Selfridge and Hurwitz in 
1963, although at present no divisor is known. 

Our final theorem, due to Euler and Lucas, is a valuable aid in determining the 
divisors of Fermat numbers. As early as 17 4 7, Euler established that every prime 
factor of Fn must be of the form k · 2n+ 1 + 1; over 100 years later, in 1879, the French 
number theorist Edouard Lucas improved upon this result by showing that k can be 
taken to be even. From this, we have the following theorem. 

Theorem 11.11. Any prime divisor p of the Fermat number Fn = 22" + 1, where 
n :::: 2, is of the form p = k · 2n+2 + 1. 

Proof. For a prime divisor p of Fn, 

22" = -1 (modp) 

which is to say, upon squaring, that 

2n+I 
2 = 1 (modp) 

If his the order of 2 modulo p, this congruence tells us that 

h 12n+i 

We cannot have h = 2' where 1 :::: r :::: n, for this would lead to 

22" = 1 (mod p) 

and, in tum, to the contradiction that p = 2. This lets us conclude that h = 2n+I. 
Because the order of 2 modulo p divides ¢(p) = p - 1, we may further conclude that 
2n+i I p- 1. The point is that for n :::: 2, p = 1 (mod 8), and therefore, by Theorem 
9.6, the Legendre symbol (2/ p) = 1. Using Euler's criterion, we immediately pass to 

ip-l)/2 = (2/p) = 1 (mod p) 

An appeal to Theorem 8.1 finishes the proof; it asserts thath I (p - 1)/2, or equivalently, 
2n+1 I (p- 1)/2. This forces 2n+2 1 p- 1, and we obtain p = k · 2n+2 + 1 for some 
integer k. 
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Theorem 11.11 enables us to determine quickly the nature of F4 = 216 + 1 = 
65537. The prime divisors of F4 must take the form 26k + 1 = 64k + 1. There is 
only one prime of this kind that is less than or equal to .[F4 , namely, the prime 193. 
Because this trial divisor fails to be a factor of F4 , we may conclude that F4 is itself 
a prime. 

The increasing power and availability of computing equipment has allowed the 
search for prime factors of the Fermat numbers to be extended significantly. For 
example, the first prime factor of F28 was found in 1997. It is now known that Fn 
is composite for 5 ~ n ~ 30, and for some 140 additional values of n. The largest 
composite Fermat number found to date is F303088 , with divisor 3 · 2303093 + 1. 

The complete prime factorization of Fn has been obtained for 5 ~ n ~ 11 and 
no other n. Mter the factorization of F8 , it was little suspected that F11 , 629 digits 
long, would be the next Fermat number to be completely factored; but this was 
carried out by Brent and Morain in 1988. The factorization of the 155-digit F9 by 
the joint efforts of Lenstra, Manasse, and Pollard in 1990 was noteworthy for having 
employed approximately 700 workstations at various locations around the world. 
The complete factorization took about 4 months. Not long thereafter (1996), Brent 
determined the remaining two prime factors of the 310-digit F10 • The reason for 
arriving at the factorization of F11 before that of F9 and F10 was that size of the 
second-largest prime factor of F11 made the calculations much easier. The second
largest prime factor of F11 contains 22 digits, whereas those of F9 and F10 have 
lengths of 49 and 40 digits, respectively. 

The enormous F31 , with a decimal expansion of over 600 million digits, was 
proved to be composite in 2001. It was computationally fortunate that F31 had a 
prime factor of only 23 digits. For F33 , the challenge remains: it is the smallest 
Fermat number whose character is in doubt. Considering that F33 has more than two 
trillion digits, the matter may not be settled for some time. 

A resume of the current primality status for the Fermat numbers Fn, where 
0 ~ n ~ 33, is given below. 

n 

0, 1, 2, 3, 4 
5, 6, 7, 8, 9, 10, 11 
12, 13, 15, 16, 18, 19, 25, 27,30 
17,21,23,26,28,29,31,32 
14,20,22,24 
33 

Character ofF n 

prime 
completely factored 
two or more prime factors known 
only one prime factor known 
composite, but no factor known 
character unknown 

The case for F16 was settled in 1953 and lays to rest the tantalizing conjecture 
that all the terms of the sequence 
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are prime numbers. What is interesting is that none of the known prime factors p of 
a Fermat number F" gives rise to a square factor p 2 ; indeed, it is speculated that the 
Fermat numbers are square-free. This is in contrast to the Mersenne numbers where, 
for example, 9 divides M6n· 

Numbers of the form k · 2" + 1, which occur in the search for prime factors of 
Fermat numbers, are of considerable interest in their own right. The smallest n for 
which k · 2" + 1 is prime may be quite large in some cases; for instance, the first 
time 47 · 2" + 1 is prime is when n = 583. But there also exist values of k such 
that k · 2" + 1 is always composite. Indeed, in 1960 it was proved that there exist 
infinitely many odd integers k with k · 2" + 1 composite for all n 2:: 1. The problem 
of determining the least such value of k remains unsolved. Up to now, k = 78557 is 
the smallest known k for which k · 211 + 1 is never prime for any n. 

PROBLEMS 11.4 

1. By taking fourth powers of the congruence 5 · 27 = -1 (mod 641), deduce that 232 + 1 = 
0 (mod 641); hence, 6411 F_~. 

2. Gauss ( 1796) discovered that a regular polygon with p sides, where p is a prime, can be 
constructed with ruler and compass if and only if p - I is a power of 2. Show that this 
condition is equivalent to requiring that p be a Fermat prime. 

3. For n > 0, prove the following: 
(a) There are infinitely many composite numbers of the fonn 22" + 3. 

[Hint: Use the fact that 22" = 3k + I for some k to establish that 7 122'"+' + 3.] 
(b) Each of the numbers 22" + 5 is composite. 

4. Composite integers n for which n 12" - 2 are called pseudoprimes. Show that every 
Fermat number F11 is either a prime or a pseudoprime. 
[Hint: Raise the congruence 22" = -I (mod F11 ) to the 22"-n power.] 

5. For n ::=: 2, show that the last digit of the Fermat number F11 = 22" + I is 7. 
[Hint: By induction on n, verify that 22" = 6 (mod I 0) for n ::=: 2.] 

6. Establish that 22" - I has at least n distinct prime divisors. 
[Hint: Use induction on n and the fact that 

7. In 1869, Landry wrote: "No one of our numerous factorizations of the numbers 2" ± 1 
gave us as much trouble and labor as that of 258 + 1." Verify that 258 + 1 can be factored 
rather easily using the identity 

4x4 + 1 = (2x 2 - 2x + 1)(2x2 + 2x + 1) 

8. From Problem 5, conclude the following: 
(a) The Fermat number F11 is never a perfect square. 
(b) For n > 0, F11 is never a triangular number. 

9. (a) For any odd integer n, show that 312" + 1. 
(b) Prove that if p and q are both odd primes and q I 2" + 1, then either q = 3 or 

q = 2kp + 1 for some integer k. 
[Hint: Because 22" = 1 (mod q), the order of 2 modulo q is either 2 or 2p; in the 
latter case, 2p 11/>(q ).] 

(c) Find the smallest prime divisor q > 3 of each of the integers 229 + 1 and 241 + 1. 
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10. Determine the smallest odd integer n > 1 such that 2" - I is divisible by a pair of twin 
primes p and q, where 3 < p < q. 
[Hint: Being the first member of a pair of twin primes, p = -I (mod6). Because (2/ p) = 
(2/q) =I, Theorem 9.6 gives p = q =±I (mod 8); hence, p =-I (mod 24) and q = 
I (mod 24). Now use the fact that the orders of 2 modulo p and q must divide n.] 

11. Find all prime numbers p such that p divides 2" + 1; do the same for 2" - I. 
12. Let p = 3 · 2" + I be a prime, where n :=::: 1. (Twenty-nine primes of this form are cur

rently known, the smallest occurring when n = I and the largest when n = 303093.) 
Prove each of the following assertions: 
(a) The order of 2 modulo pis either 3, 2" or 3 · 2k for some 0 ::=: k ::=: n. 
(b) Except when p = 13, 2 is not a primitive root of p. 

[Hint: If 2 is a primitive root of p, then (2/ p) = -1.] 
(c) The order of2 modulo pis not divisible by 3 if and only if p divides a Fermat number 

Ft.. with 0 ::=: k ::=: n - 1. 
[Hint: Use the identity 22'- I= F0 F1F2 .•• Fk-i·] 

(d) There is no Fermat number that is divisible by 7, 13, or 97. 
13. For any Fermat number F11 = 22" + 1 with n > 0, establish that F,, = 5 or 8 (mod 9) 

according as n is odd or even. 
[Hint: Use induction to show, first, that 22" = 22"-' (mod 9) for n :=::: 3.] 

14. Use the fact that the prime divisors of F5 are of the form 2 7 k + 1 = 128k + 1 to confirm 
that 641 I F_, . 

15. For any prime p > 3, prove the following: 
(a) 1C2" + I) is not divisible by 3. 

[Hint: Consider the identity 

2" + 1 -- = 2"-l - 2"-2 + ... - 2 + 1.] 
2+1 

(b) 1C2" +I) has a prime divisor greater than p. 
[Hint: Problem 9(b).] 

(c) The integers 1C219 +I) and 1C223 + 1) are both prime. 
16. From the previous problem, deduce that there are infinitely many prime numbers. 
17. (a) Prove that3, 5, and 7 are quadratic nonresidues of any Fermat prime F11 , where n :=::: 2. 

[Hint: Pepin's test and Problem 15, Section 9.3.] 
(b) Show that every quadratic nonresidue of a Fermat prime F11 is a primitive root ofF,,. 

18. Establish that any Fermat prime F,, can be written as the difference of two squares, but 
not of two cubes. 
[Hint: 

Fn = 22" + 1 = (22"-l + 1)2- (22"-1)2.] 

19. For n 2:: 1, show that gcd(F11 , n) = 1. 
[Hint: Theorem 11.11.] 

20. Use Theorems 11.9 and 11.11 to deduce that there are infinitely many primes of the form 
4k + 1. 





CHAPTER 

12 
CERTAIN NONLINEAR 

DIOPHANTINE EQUATIONS 

He who seeks for methods without having a definite problem in mind seeks for 
the most part in vain. 

D. HILBERT 

12.1 THE EQUATION x2 + y 2 = z2 

Fermat, whom many regard as a father of modern number theory, nevertheless, had a 
custom peculiarly ill-suited to this role. He published very little personally, preferring 
to communicate his discoveries in letters to friends (usually with no more than the 
terse statement that he possessed a proof) or to keep them to himself in notes. 
A number of such notes were jotted down in the margin of his copy of Bachet's 
translation of Diophantus's Arithmetica. By far the most famous of these marginal 
comments is the one-presumably written about 1637-which states: 

It is impossible to write a cube as a sum of two cubes, a fourth power as a sum of two 
fourth powers, and, in general, any power beyond the second as a sum of two similar 
powers. For this, I have discovered a truly wonderful proof, but the margin is too small 
to contain it. 

In this tantalizing aside, Fermat was simply asserting that, if n > 2, then the Dio
phantine equation 

245 
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has no solution in the integers, other than the trivial solutions in which at least one 
of the variables is zero. 

The quotation just cited has come to be known as Fermat's Last Theorem or, 
more accurately, Fermat's conjecture. By the 1800s, all the assertions appearing in the 
margin of his Arithmetica had either been proved or refuted-with the one exception 
of the Last Theorem (hence the name). The claim has fascinated many generations of 
mathematicians, professional and amateur alike, because it is so simple to understand 
yet so difficult to establish. If Fermat really did have a "truly wonderful proof," it 
has never come to light. Whatever demonstration he thought he possessed very 
likely contained a flaw. Indeed, Fermat himself may have subsequently discovered 
the error, for there is no reference to the proof in his correspondence with other 
mathematicians. 

Fermat did, however, leave a proof of his Last Theorem for the case n = 4. To 
carry through the argument, we first undertake the task of identifying all solutions 
in the positive integers of the equation 

(1) 

Because the length z of the hypotenuse of a right triangle is related to the lengths 
x and y of the sides by the famous Pythagorean equation x 2 + y2 = z2, the search 
for all positive integers that satisfy Eq. (1) is equivalent to the problem of finding all 
right triangles with sides of integral length. The latter problem was raised in the days 
of the Babylonians and was a favorite with the ancient Greek geometers. Pythagoras 
himself has been credited with a formula for infinitely many such triangles, namely, 

x = 2n + 1 y = 2n2 + 2n z = 2n2 + 2n + 1 

where n is an arbitrary positive integer. This formula does not account for all right 
triangles with integral sides, and it was not until Euclid wrote his Elements that a 
complete solution to the problem appeared. 

The following definition gives us a concise way of referring to the solutions of 
Eq. (1). 

Definition 12.1. A Pythagorean triple is a set of three integers x, y, z such that 
x2 + y2 = z2 ; the triple is said to be primitive if gcd(x, y, z) = 1. 

Perhaps the best-known examples of primitive Pythagorean triples are 3, 4, 5 
and 5, 12, 13, whereas a less obvious one is 12, 35, 37. 

There are several points that need to be noted. S\lppose that x, y, z is any 
Pythagorean triple and d = gcd(x, y, z). If we write x = dx1, y = dy1, z = dz 1, 

then it is easily seen that 

2 2 x2 + y2 z2 2 
x, + y, = d2 = d2 = z, 

with gcd(x1 , y1 , z 1) = 1. In short, x1, y1, z 1 form a primitive Pythagorean triple. 
Thus, it is enough to occupy ourselves with finding all primitive Pythagorean triples; 
any Pythagorean triple can be obtained from a primitive one upon multiplying by a 
suitable nonzero integer. The search may be confined to those primitive Pythagorean 
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triples x, y, z in which x > 0, y > 0, z > 0, inasmuch as all others arise from the 
positive ones through a simple change of sign. 

Our development requires two preparatory lemmas, the first of which sets forth 
a basic fact regarding primitive Pythagorean triples. 

Lemma 1. If x, y, z is a primitive Pythagorean triple, then one of the integers x or y 
is even, while the other is odd. 

Proof. If x andy are both even, then 2/ (x2 + y2) or 2/ z2 , so that 2/ z. The inference 
is that gcd(x , y , z) 2:: 2, which we know to be false. If, on the other hand, x and y 
should both be odd, then x 2 = 1 (mod 4) and y2 = 1 (mod 4), leading to 

z2 = x 2 + y2 = 2 (mod 4) 

But this is equally impossible, because the square of any integer must be congruent 
either to 0 or to 1 modulo 4. 

Given a primitive Pythagorean triple x, y, z, exactly one of these integers is 
even, the other two being odd (if x, y, z were all odd, then x 2 + y 2 would be even, 
whereas z2 is odd). The foregoing lemma indicates that the even integer is either x 
or y; to be definite, we shall hereafter write our Pythagorean triples so that x is even 
and y is odd; then, of course, z is odd. 

It is worth noticing (and we will use this fact) that each pair of the integers x, y, 
and z must be relatively prime. Were it the case that gcd(x, y) = d > 1, then there 
would exist a prime p with p I d. Because d I x and d I y, we would have p I x and 
pI y, whence pI x 2 and pI y 2• But then pI (x2 + y 2 ), or pI z2, giving pI z. This 
would conflict with the assumption that gcd(x, y, z) = 1, and so d = 1. In like 
manner, one can verify that gcd(y , z) = gcd(x , z) = 1. 

By virtue of Lemma 1, there exists no primitive Pythagorean triple x, y, z all of 
whose values are prime numbers. There are primitive Pythagorean triples in which 
z and one of x or y is a prime; for instance, 3, 4, 5; 11, 60, 61; and 19, 180, 181. It 
is unknown whether there exist infinitely many such triples. 

The next hurdle that stands in our way is to establish that if a and b are relatively 
prime positive integers having a square as their product, then a and b are themselves 
squares. With an assist from the Fundamental Theorem of Arithmetic, we can prove 
considerably more, to wit, Lemma 2. 

Lemma 2. If ab =en, where gcd(a, b)= 1, then a and bare nth powers; that is, 
there exist positive integers a 1, b1 for which a = a~, b = b~. 

Proof. There is no harm in assuming that a > 1 and b > 1. If 

are the prime factorizations of a and b, then, bearing in mind that gcd(a, b)= 1, no 
p; can occur among the q;. As a result, the prime factorization of ab is given by 

k k . 
ab = P1 1 • • • Pr'qt ... qf' 
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Let us suppose that c can be factored into primes as c = u~' u~ · · · u1. Then the condition 
ab = en becomes 

k, k, h j nl, n/1 
PI "· Pr ql "· q; = Ul "· Ut 

From this we see that the primes u1, ... , u1 are PI, ... , p,, q1, •.. , qs (in some order) 
and nl1, .•• , nl1 are the corresponding exponents k1, •.• , k, j], ... , is· The conclu
sion: Each of the integers ki and ji must be divisible by n. If we now put 

k,jn k2/n k,jn 
a1 =PI P2 · · · Pr 

b h/n h/n j,jn 
I= ql q2 "' qs 

then a~ = a, b~ = b, as desired. 

With the routine work now out of the way, the characterization of all primitive 
Pythagorean triples is fairly straightforward. 

Theorem 12.1. All the solutions of the Pythagorean equation 

x 2 + i = z2 

satisfying the conditions 

gcd(x , y , z) = 1 21x X > 0, y > 0, Z > 0 

are given by the formulas 

x = 2st 

for integers s > t > 0 such that gcd(s, t) = 1 and s ¢- t (mod 2). 

Proof. To start, let x, y, z be a (positive) primitive Pythagorean triple. Because we 
have agreed to take x even, andy and z both odd, z- y and z +yare even integers; 
say, z - y = 2u and z + y = 2v. Now the equation x 2 + y2 = z2 may be rewritten as 

x 2 = z2 - i = (z - y )(z + y) 

whence 

Notice that u and v are relatively prime; indeed, if gcd(u, v) = d > 1, then d I (u - v) 
and d I (u + v ), or equivalently, d I y and d I z, which violates the fact that gcd(y , z) = 
1. Taking Lemma 2 into consideration, we may conclude that u and v are each perfect 
squares; to be specific, let 

where s and t are positive integers. The result of substituting these values of u and v 
reads 

z = v + u = s2 + t 2 

y = v - u = s2 - t 2 

x 2 = 4vu = 4s2t2 
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or, in the last case x = 2st. Because a common factor of sand t divides both y and z, 
the condition gcd(y, z) = 1 forces gcd(s, t) = 1. It remains for us to observe that if 
s and t were both even, or both odd, then this would make each of y and z even, which 
is an impossibility. Hence, exactly one of the pairs, t is even, and the other is odd; in 
symbols, s ¢. t (mod 2). 

Conversely, let s and t be two integers subject to the conditions described before. 
That x = 2st, y = s2 - t2 , z = s2 + t2 form a Pythagorean triple follows from the 
easily verified identity 

xz + l = (2st)z + (sz - tz)z = (sz + tz)z = zz 

To see that this triple is primitive, we assume that gcd(x , y, z) = d > 1 and take p to 
be any prime divisor of d. Observe that p =f. 2, because p divides the odd integer z (one 
of s and t is odd, and the other is even, hence, s2 + t2 = z must be odd). From p 1 y 
and pI z, we obtain pI (z + y) and pI (z- y), or put otherwise, p 12s2 and p 12t2 . 

But then pIs and pIt, which is incompatible with gcd(s, t) = 1. The implication of 
all this is that d = 1 and sox, y, z constitutes a primitive Pythagorean triple. Theorem 
12.1 is thus proven. 

The table below lists some primitive Pythagorean triples arising from small 
values of s and t. For each value of s = 2, 3, ... , 7, we have taken those values oft 
that are relatively prime to s, less than s, and even whenever s is odd. 

X y z 

s (2st) (s2 - tl) (s2 + tl) 

2 4 3 5 
3 2 12 5 13 
4 1 8 15 17 
4 3 24 7 25 
5 2 20 21 29 
5 4 40 9 41 
6 1 12 35 37 
6 5 60 11 61 
7 2 28 45 53 
7 4 56 33 65 
7 6 84 13 85 

From this, or from a more extensive table, the reader might be led to suspect 
that if x, y, z is a primitive Pythagorean triple, then exactly one of the integers x or 
y is divisible by 3. This is, in fact, the case. For, by Theorem 12.1, we have 

x = 2st 

where gcd(s, t) = 1. If either 31 s or 31 t, then evidently 31 x, and we need go no 
further. Suppose that 3 l s and 3 l t. Fermat's theorem asserts that 

s2 = 1 (mod 3) t 2 = 1 (mod 3) 
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and so 

y = s2 - t 2 = 0 (mod 3) 

In other words, y is divisible by 3, which is what we were required to show. 
Let us define a Pythagorean triangle to be a right triangle whose sides are 

of integral length. Our findings lead to an interesting geometric fact concerning 
Pythagorean triangles, recorded as Theorem 12.2. 

Theorem 12.2. The radius of the inscribed circle of a Pythagorean triangle is always 
an integer. 

Proof. Let r denote the radius of the circle inscribed in a right triangle with hypotenuse 
of length z and sides of lengths x and y. The area of the triangle is equal to the sum of 
the areas of the three triangles having common vertex at the center of the circle; hence, 

1 1 1 1 1 
2xy = 2rx + 2 ry + 2 rz = 2 r(x + y + z) 

The situation is illustrated below: 

X 

y 

Now x 2 + y 2 = z2. But we know that the positive integral solutions of this equation 
are given by 

x = 2kst 

for an appropriate choice of positive integers k, s, t. Replacing x, y, z in the equation 
xy = r(x + y + z) by these values and solving for r, it will be found that 

2k2st(s2 - t 2) 
r = ----::---:------::c---:-

k(2st + s2 - t 2 + s2 + t2) 

kt(s 2 - t 2) 

s + t 
= kt(s- t) 

which is an integer. 

We take the opportunity to mention another result relating to Pythagorean tri
angles. Notice that it is possible for different Pythagorean triangles to have the same 
area; for instance, the right triangles associated with the primitive Pythagorean triples 
20, 21, 29 and 12, 35, 37 each have an area equal to 210. Fermat proved: For any 
integer n > 1, there exist n Pythagorean triangles with different hypotenuses and 
the same area. The details of this are omitted. 
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PROBLEMS 12.1 

1. (a) Find three different Pythagorean triples, not necessarily primitive, of the form 
16, y, z. 

(b) Obtain all primitive Pythagorean triples x, y, z in which x = 40; do the same for 
X= 60. 

2. If x, y, z is a primitive Pythagorean triple, prove that x + y and x - y are congruent 
modulo 8 to either 1 or 7. 

3. (a) Prove that if n ¥= 2 (mod 4), then there is a primitive Pythagorean triplex, y, z in 
which x or y equals n. 

(b) If n :=:: 3 is arbitrary, find a Pythagorean triple (not necessarily primitive) having n as 
one of its members. 
[Hint: Assuming n is odd, consider the triple n, 4<n2 - 1), 4<n2 + 1); for n even, 
consider the triple n, (n 2 /4)- 1, (n 2 /4) + 1.] 

4. Prove that in a primitive Pythagorean triplex, y, z, the product xy is divisible by 12, 
hence 60 I xyz. 

5. For a given positive integer n, show that there are at least n Pythagorean triples having 
the same first member. 
[Hint: Let Yk = 2k(22n-2k - 1) and Zk = 2k(22n-2k + 1) fork = 0, 1, 2, ... , n - 1. Then 
2n+I, Yk. Zk are all Pythagorean triples.] 

6. Verify that 3, 4, 5 is the only primitive Pythagorean triple involving consecutive positive 
integers. 

7. Show that 3n, 4n, 5n where n = 1, 2, ... are the only Pythagorean triples whose terms 
are in arithmetic progression. 
[Hint: Call the triple in question x - d, x, x + d, and solve for x in terms of d.] 

8. Find all Pythagorean triangles whose areas are equal to their perimeters. 
[Hint:Theequationsx2 + y 2 = z2 andx + y + z = 4xy implythat(x- 4)(y- 4) = 8.] 

9. (a) Prove that if x, y, z is a primitive Pythagorean triple in which x and z are consecutive 
positive integers, then 

X = 2t(t + 1) y=2t+1 z = 2t(t + 1) + 1 

for some t > 0. 
[Hint: The equation 1 = z- x = s2 + t 2 - 2st implies that s- t = 1.] 

(b) Prove that if x, y, z is a primitive Pythagorean triple in which the difference z - y = 2, 
then 

X= 2t 

for some t > 1. 
10. Show that there exist infinitely many primitive Pythagorean triples x, y, z whose even 

member x is a perfect square. 
[Hint: Consider the triple 4n2 , n4 - 4, n4 + 4, where n is an arbitrary odd integer.] 

11. For an arbitrary positive integer n, show that there exists a Pythagorean triangle the radius 
of whose inscribed circle is n. 
[Hint: If r denotes the radius of the circle inscribed in the Pythagorean triangle having 
sides a and band hypotenuse c, then r = 4<a + b- c). Now consider the triple 2n + 1, 

2n2 + 2n, 2n2 + 2n + 1.] 
12. (a) Establish that there exist infinitely many primitive Pythagorean triples x, y, z in 

which x andy are consecutive positive integers. Exhibit five of these. 
[Hint: If x, x + 1, z forms a Pythagorean triple, then so does the triple 3x + 2z + 1, 
3x + 2z + 2, 4x + 3z + 2.] 
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(b) Show that there exist infinitely many Pythagorean triples x, y, z in which x andy 
are consecutive triangular numbers. Exhibit three of these. 
[Hint: If x, x + 1, z forms a Pythagorean triple, then so does t2x, t2x+l• (2x + 1)z.] 

13. Use Problem 12 to prove that there exist infinitely many triangular numbers that are 
perfect squares. Exhibit five such triangular numbers. 
[Hint: If x, x + 1, z forms a Pythagorean triple, then upon setting u = z - x - 1, v = 
x + ~(1 - z), one obtains u(u + 1)/2 = v2.] 

12.2 FERMAT'S LAST THEOREM 

With our knowledge of Pythagorean triples, we are now prepared to take up the 
one case in which Fermat himself had a proof of his conjecture, the case n = 4. 
The technique used in the proof is a form of induction sometimes called "Fermat's 
method of infinite descent." In brief, the method may be described as follows: It is 
assumed that a solution of the problem in question is possible in the positive integers. 
From this solution, one constructs a new solution in smaller positive integers, which 
then leads to a still smaller solution, and so on. Because the positive integers cannot 
be decreased in magnitude indefinitely, it follows that the initial assumption must 
be false and therefore no solution is possible. 

Instead of giving a proof of the Fermat conjecture for n = 4, it turns out to be 
easier to establish a fact that is slightly stronger, namely, the impossibility of solving 
the equation x4 + y4 = z2 in the positive integers. 

Theorem 12.3 Fermat. The Diophantine equation x4 + y4 = z2 has no solution in 
positive integers x, y, z. 

Proof. With the idea of deriving a contradiction, let us assume that there exists a 
positive solution x0 , y0 , zo of x 4 + y4 = z2 . Nothing is lost in supposing also that 
gcd(xo, Yo)= 1; otherwise, put gcd(xo, Yo)= d, xo = dx1. Yo= dy1, zo = d 2z1 to 
get xi+ Yi = zi with gcd(xi, YI) = 1. 

Expressing the supposed equation xti + Yti = z5 in the form 

(x5)2 + (Y5? = z5 
we see that x5, y~, zo meet all the requirements of a primitive Pythagorean triple, and 
therefore Theorem 12.1 can be brought into play. In such triples, one of the integers 
x~ or y~ is necessarily even, whereas the other is odd. Taking x~ (and hence x0 ) to be 
even, there exist relatively prime integers s > t > 0 satisfying 

x~ = 2st 

y~ = s2- t2 

zo = s2 + t 2 

where exactly one of s and t is even. If it happens that s is even, then we have 

1 = Y5 = s2 - t 2 = 0- 1 = 3 (mod 4) 

which is an impossibility. Therefore, s must be the odd integer and, in consequence, 
tis the even one. Let us putt= 2r. Then the equation x5 = 2st becomes x~ = 4sr, 



CERTAIN NONLINEAR DIOPHANTINE EQUATIONS 253 

which says that 

(~) 2 
= sr 

But Lemma 2 asserts that the product of two relatively prime integers [note that 
gcd(s, t) = 1 implies that gcd(s, r) = 1] is a square only if each of the integers 
itself is a square; hence, s = zi, r = w i for positive integers z1, w 1. 

We wish to apply Theorem 12.1 again, this time to the equation 

t2 + yJ = s2 

Because gcd(s, t) = 1, it follows that gcd(t, y0 , s) = 1, making t, y0, sa primitive 
Pythagorean triple. With t even, we obtain 

t = 2uv 

Yo= u2- v2 

s = u2 + v2 

for relatively prime integers u > v > 0. Now the relation 

t 2 
uv = 2' = r = w 1 

signifies that u and v are both squares (Lemma 2 serves its purpose once more); say, 
u = x? and v = Y?. When these values are substituted into the equation for s, the result 
is 

zi = s = u2 + v2 = x{ + y{ 
A crucial point is that, z1 and t being positive, we also have the inequality 

0 < Zt ::':: zi = s ::':: s 2 < s2 + t 2 = zo 

What has happened is this. Starting with one solution x0, y0, zo of x4 + y4 = z2, 

we have constructed another solution x1, y1, z1 such that 0 < z1 < z0 . Repeating the 
whole argument, our second solution would lead to a third solution x2 , y2 , z2 with 
0 < z2 < Zt. which, in tum, gives rise to a fourth. This process can be carried out as 
many times as desired to produce an infinite decreasing sequence of positive integers 

Zo > Zt > Z2 > · · · 

Because there is only a finite supply of positive integers less than z0, a contradiction 
occurs. We are forced to conclude that x4 + y4 = z2 is not solvable in the positive 
integers. 

As an immediate result, one gets the following corollary. 

Corollary. The equation x4 + y4 = z4 has no solution in the positive integers. 

Proof. If xo, yo, zo were a positive solution of x 4 + y4 = z4 , then xo, yo, z6 would 
satisfy the equation x4 + y4 = z2 , in conflict with Theorem 12.3. 

If n > 2, then n is either a power of 2 or divisible by an odd prime p. In the first 
case, n = 4k for some k :=:: 1 and the Fermat equation xn + yn = zn can be written 
as 
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We have just seen that this equation is impossible in the positive integers. When 
n = pk, the Fermat equation is the same as 

(xk)P + (/)P = (l)P 

If it could be shown that the equation uP + vP = wP has no solution, then, in par
ticular, there would be no solution of the form u = xk, v = yk, w = zk; hence, 
xn + yn = zn would not be solvable. Therefore, Fermat's conjecture reduces to this: 
For no odd prime p does the equation 

xP + yP = zP 

admit a solution in the positive integers. 
Although the problem has challenged the foremost mathematicians of the last 

300 years, their efforts tended to produce partial results and proofs of individual 
cases. Euler gave the first proof of the Fermat conjecture for the prime p = 3 in the 
year 1770; the reasoning was incomplete at one stage, but Legendre later supplied 
the missing steps. Using the method of infinite descent, Dirichlet and Legendre 
independently settled the case p = 5 around 1825. Not long thereafter, in 1839, 
Lame proved the conjecture for seventh powers. With the increasing complexity 
of the arguments came the realization that a successful resolution of the general 
case called for different techniques. The best hope seemed to lie in extending the 
meaning of "integer" to include a wider class of numbers and, by attacking the 
problem within this enlarged system, obtaining more information than was possible 
by using ordinary integers only. 

The German mathematician Kummer made the major breakthrough. In 1843, he 
submitted to Dirichlet a purported proof of Fermat's conjecture based upon an ex:. 
tension of the integers to include the so-called "algebraic numbers" (that is, complex 
numbers satisfying polynomials with rational coefficients). Having spent consider
able time on the problem himself, Dirichlet was immediately able to detect the flaw 
in the reasoning: Kummer had taken for granted that algebraic numbers admit a 
unique factorization similar to that of the ordinary integers, which is not always true. 

But Kummer was undeterred by this perplexing situation and returned to his 
investigations with redoubled effort. To restore unique factorization to the algebraic 
numbers, he was led to invent the concept of ideal numbers. By adjoining these new 
entities to the algebraic numbers, Kummer successfully proved Fermat's conjecture 
for a large class of primes that he termed regular primes (that this represented an 
enormous achievement is reflected in the fact that the only irregular primes less 
than 100 are 37, 59, and 67). Unfortunately, it is still not known whether there are 
an infinite number of regular primes, whereas in the other direction, Jensen (1915) 
established that there exist infinitely many irregular ones. Almost all the subsequent 
progress on the problem was within the framework suggested by Kummer. 

In 1983, a 29-year-old West German mathematician, Gerd Faltings, proved that 
for each exponent n > 2, the Fermat equation xn + yn = zn can have at most a finite 
number (as opposed to an infinite number) of integral solutions. At first glance, this 
may not seem like much of an advance; but if it could be shown that the finite number 
of solutions was zero in each case, then the Fermat's conjecture would be laid to rest 
once and for all. 



CERTAIN NONLINEAR DIOPHANTINE EQUATIONS 255 

Another striking result, established in 1987, was that Fermat's assertion is true 
for "almost all" values of n; that is, as n increases the percentage of cases in which 
the conjecture could fail approaches zero. 

With the advent of computers, various numerical tests were devised to verify 
Fermat's conjecture for specific values of n. In 1977, S. S. Wagstaff took over 2 years, 
using computing time on four machines on weekends and holidays, to show that the 
conjecture held for all n _:s 125000. Since that time, the range of exponents for which 
the result was determined to be true has been extended repeatedly. By 1992, Fermat's 
conjecture was known to be true for exponents up to 4000000. 

For a moment in the summer of 1993, it appeared that the final breakthrough 
had been made. At the conclusion of 3 days of lectures in Cambridge, England, 
Andrew Wiles of Princeton University stunned his colleagues by announcing that he 
could favorably resolve Fermat's conjecture. His proposed proof, which had taken 
7 years to prepare, was an artful blend of many sophisticated techniques developed by 
other mathematicians only within the preceding decade. The key insight was to link 
equations of the kind posed by Fermat with the much-studied theory of elliptic curves; 
that is, curves determined by cubic polynomials of the form y2 = x3 + ax + b, 
where a and b are integers. 

The overall structure and strategy of Wiles's argument was so compelling that 
mathematicians hailed it as almost certainly correct. But when the immensely com
plicated 200-page manuscript was carefully scrutinized for hidden errors, it revealed 
a subtle snag. No one claimed that the flaw was fatal, and bridging the gap was felt 
to be feasible. Over a year later, Wiles provided a corrected, refined, and shorter 
(125-page) version of his original proof to the enthusiastic reviewers. The revised 
argument was seen to be sound, and Fermat's seemingly simple claim was finally 
settled. 

The failure of Wiles's initial attempt is not really surprising or unusual in math
ematical research. Normally, proposed proofs are privately circulated and examined 
for possible flaws months in advance of any formal announcement. In Wiles's case, 
the notoriety of one of number theory's most elusive conjectures brought premature 
publicity and temporary disappointment to the mathematical community. 

To round out our historical digression, we might mention that in 1908 a prize 
of 100,000 marks was bequeathed to the Academy of Science at Gottingen to be 
paid for the first complete proof of Fermat's conjecture. The immediate result was 
a deluge of incorrect demonstrations by amateur mathematicians. Because only 
printed solutions were eligible, Fermat's conjecture is reputed to be the mathemat
ical problem for which the greatest number of false proofs have been published; 
indeed, between 1908 and 1912 over 1000 alleged proofs appeared, mostly printed 
as private pamphlets. Suffice it to say, interest declined as the German inflation 
of the 1920s wiped out the monetary value of the prize. (With the introduction of 
the Reichsmark and Deutsche Mark [OM] and after various currency revaluations, 
the award was worth about OM 75,000 or $40,000 when it was presented to Wiles 
in 1997.) 

From x 4 + y4 = z2, we move on to a closely related Diophantine equation, 
namely, x 4 - y4 = z2. The proof of its insolubility parallels that of Theorem 12.3, 
but we give a slight variation in the method of infinite descent. 
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Theorem 12.4 Fermat. The Diophantine equation x4 - y4 = z2 has no solution in 
positive integers x, y, z. 

Proof. The proof proceeds by contradiction. Let us assume that the equation admits 
a solution in the positive integers and among these solutions x0 , y0 , zo is one with 
a least value of x; in particular, this supposition forces x0 to be odd (Why?). Were 
gcd(xo , Yo) = d > 1, then putting xo = dxt, Yo = dyt, we would have d4(x{ - y{) = 
z5, whence d2 1 zo or zo = d2z1 for some z1 > 0. It follows that Xt. y1, z1 provides a 
solution to the equation under consideration with 0 < x1 < x0 , which is an impossible 
situation. Thus, we are free to assume a solution x0, y0 , zo in which gcd(x0 , y0 ) = 1. 
The ensuing argument falls into two stages, depending on whether y0 is odd or even. 

First, consider the case of an odd integer y0 . If the equation xti - Yti = z5 is 
written in the form z5 + (y5)2 = (x5)2 , we see that zo, y5, x5 constitute a primitive 
Pythagorean triple. Theorem 12.1 asserts the existence of relatively prime integers 
s > t > 0 for which 

Thus, it appears that 

zo = 2st 

Y5 = s2- t2 

x5 = s2 + t2 

s4 - t4 = (s2 + t2)(s2 - t2) = x6y6 = (xoyo)2 

makings, t, x0 y0 a (positive) solution to the equation x 4 - y4 = z2 . Because 

0 < s < J s2 + t 2 = xo 

we arrive at a contradiction to the minimal nature of x0 . 

For the second part of the proof, assume that y0 is an even integer. Using the 
formulas for primitive Pythagorean triples, we now write 

Y5 = 2st 

zo = s2 - t 2 

x5 = s2 + t2 

where s may be taken to be even and t to be odd. Then, in the relation Y6 = 2st, we have 
gcd(2s , t) = 1. The now-customary application of Lemma 2 tells us that 2s and t are 
each squares of positive integers; say, 2s = w 2 , t = v2 • Because w must of necessity 
be an even integer, set w = 2u to gets = 2u2. Therefore, 

x6 = s2 + t2 = 4u4 + v4 

and so 2u2, v2, x0 forms a primitive Pythagorean triple. Falling back on Theorem 12.1 
again, there exist integers a > b > 0 for which 

2u2 = 2ab 
v2 = a2- b2 

xo = a2 + b2 

where gcd(a, b)= 1. The equality u2 = ab ensures that a and bare perfect squares, 
so that a = c2 and b = d2• Knowing this, the rest of the proof is easy; for, upon 
substituting, 



CERTAIN NONLINEAR DIOPHANTINE EQUATIONS 257 

The result is a new solution c, d, v of the given equation x4 - y4 = z2 and what is 
more, a solution in which 

0 < c = Ja < a 2 + b2 = x0 

contrary to our assumption regarding x0 • 

The only resolution of these contradictions is that the equation x4 - y4 = z2 

cannot be satisfied in the positive integers. 

In the margin of his copy ofDiophantus'sArithmetica, Fermat states and proves 
the following: The area of a right triangle with rational sides cannot be the square of 
a rational number. Clearing of fractions, this reduces to a theorem about Pythagorean 
triangles, to wit, Theorem 12.5. 

Theorem 12.5. The area of a Pythagorean triangle can never be equal to a perfect 
(integral) square. 

Proof. Consider a Pythagorean triangle whose hypotenuse has length z and other two 
sides have lengths x andy, so that x2 + y2 = z2 . The area of the triangle in question 
is ~xy, and if this were a square, say u2 , it would follow that 2xy = 4u2 . By adding 
and subtracting the last-written equation from x2 + y2 = z2 , we are led to 

(x + y)2 = z2 + 4u2 and (x- y)2 = z2 - 4u2 

When these last two equations are multiplied together, the outcome is that two fourth 
powers have as their difference a square: 

(x2 - i)2 = z4 - 16u4 = z4 - (2u)4 

Because this amounts to an infringement on Theorem 12.4, there can be no Pythagorean 
triangle whose area is a square. 

There are a number of simple problems pertaining to Pythagorean triangles that 
still await solution. The corollary to Theorem 12.3 may be expressed by saying that 
there exists no Pythagorean triangle all the sides of which are squares. However, 
it is not difficult to produce Pythagorean triangles whose sides, if increased by 1, 
are squares; for instance, the triangles associated with the triples 132 - 1, 102 - 1, 
142 - 1, and 2872 - 1, 2652 - 1, 3292 - 1. An obvious-and as yet unanswered
question is whether there are an infinite number of such triangles. We can find 
Pythagorean triangles each side of which is a triangular number. [By a triangular 
number, we mean an integer of the form tn = n(n + 1)/2.] An example of such 
is the triangle corresponding to tm, t143, t164. It is not known if infinitely many 
Pythagorean triangles of this type exist. 

As a closing comment, we should observe that all the effort expended on attempt
ing to prove Fermat's conjecture has been far from wasted. The new mathematics 
that was developed as a by-product laid the foundations for algebraic number theory 
and the ideal theory of modem abstract algebra. It seems fair to say that the value of 
these far exceeds that of the conjecture itself. 

Another challenge to number theorists, somewhat akin to Fermat's conjecture, 
concerns the Catalan equation. Consider for the moment the squares and cubes of 
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positive integers in increasing order: 

1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, ... 

We notice that 8 and 9 are consecutive integers in this sequence. The medieval 
astronomer Levi ben Gerson ( 1288-1344) proved that there are no other consecutive 
powers of 2 and 3; to put it another way, he showed that if 3m- 2n = ±1, with 
m > 1 and n > 1, then m = 2 and n = 3. In 1738, Euler, using Fermat's method 
of infinite descent, dealt with the equation x 3 - y2 = ± 1, proving that x = 2 and 
y = 3. Catalan himself contributed little more to the consecutive-power problem 
than the assertion (1844) that the only solution of the equation xm - yn = 1 in 
integers x, y, m, n, all greater than 1, ism = y = 2, n = x = 3. This statement, now 
known as Catalan's conjecture, was proved, in 2002. 

Over the years, the Catalan equation xm - yn = 1 had been shown to be impos
sible of solution for special values of m and n. For example in 1850, V. A. Lebesgue 
proved that xm - y2 = 1 admits no solution in the positive integers form =j=. 3; but, 
it remained until 1964 to show that the more difficult equation x2 - yn = 1 is not 
solvable for n =j=. 3. The cases x 3 - yn = 1 and xm - y3 = 1, with m =j=. 2, were suc
cessfully resolved in 1921. The most striking result, obtained by R. Tijdeman in 
1976, is that xm - yn = 1 has only a finite number of solutions, all of which are 
smaller than some computable constant C > 0; that is, xm, yn < C. 

Suppose that Catalan's equation did have a solution other than 32 - 23 = 1. 
If p and q are primes dividing m and n respectively, then xmfp and ynfq would 
provide a solution to the equation uP - vq = 1. What needed to be shown was that 
this equation was not solvable in integers u, v ::=::: 2 and distinct primes p, q ::=::: 5. One 
approach called for obtaining explicit bounds on the possible size of the exponents. A 
series of investigations continually sharpened the restrictions until by the year 2000 
it was known that 3 · 108 < p < (7.15)1011 and 3.108 < q < (7.75)1016 . Thus, the 
Catalan conjecture could in principle be settled by exhaustive computer calculations; 
but until the upper bound was lowered, this would take a long time. 

In 2000, Preda Mihailescu proved that for a Catalan solution to exist, p and q 
must satisfy the simultaneous congruences 

These are known as double Wieferich primes, after Arthur Wieferich, who inves
tigated (1909) the congruence 2P-l = 1 (mod p 2). Such pairs of primes are rare, 
with only six pairs having been identified by the year 2001. Furthermore, as each 
ofthese 12 primes is less than 3 · 108, none satisfied the known restrictions. Taking 
advantage of his results on Wieferich primes, Mihailescu continued to work on the 
problem. He finally settled the famous question early in the following year: the only 
consecutive powers are 8 and 9. 

One interesting consequence of these results is that no Fermat number Fn = 
22" + 1 can be a power of another integer, the exponent being greater than 1. For if 
Fn = am, with m 2:: 2, then am - (22"-1 

) 2 = 1, which would imply that the equation 
xm - y2 = 1 has a solution. 
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PROBLEMS 12.2 

1. Show that the equation x 2 + y2 = z3 has infinitely many solutions for x, y, z positive 
integers. 
[Hint: For any n :=:: 2, let x = n(n2 - 3) andy = 3n2 - 1.] 

2. Prove the theorem: The only solutions in nonnegative integers of the equation x 2 + 2y2 = 
z2 , with gcd(x, y, z) = 1, are given by 

x = ±(2s2 - t 2) y = 2st z = 2s2 + t 2 

where s, t are arbitrary nonnegative integers. 
[Hint: If u, v, w are such that y = 2w, z + x = 2u, z - x = 2v, then the equation 
becomes 2w 2 = uv .] 

3. In a Pythagorean triplex, y, z, prove that not more than one of x, y, or z can be a perfect 
square. 

4. Prove each of the following assertions: 
(a) The system of simultaneous equations 

x 2 + l = z2 - 1 and 

has infinitely many solutions in positive integers x, y, z, w. 
[Hint: For any integer n :=:: 1, take x = 2n2 andy= 2n.] 

(b) The system of simultaneous equations 

and 

admits no solution in positive integers x, y, z, w. 
(c) The system of simultaneous equations 

and 

has infinitely many solutions in positive integers x, y, z, w. 
[Hint: For any integer n :=:: 1, take x = 8n4 + 1 andy= 8n3 .] 

5. Use Problem 4 to establish that there is no solution in positive integers of the simultaneous 
equations 

and 

[Hint: Any solution of the given system also satisfies z2 + y2 = w 2 and z2 - y2 = x 2 .] 

6. Show that there is no solution in positive integers of the simultaneous equations 

and 

hence, there exists no Pythagorean triangle whose hypotenuse and one of whose sides 
form the sides of another Pythagorean triangle. 
[Hint: Any solution of the given system also satisfies x 4 + (wy? = z4 .] 

7. Prove that the equation x4 - y4 = 2z2 has no solutions in positive integers x, y, z. 
[Hint: Because x, y must be both odd or both even, x 2 + y 2 = 2a2 , x + y = 2b2 , 

x - y = 2c2 for some a, b, c; hence, a2 = b4 + c4 .] 

8. Verify that the only solution in relatively prime positive integers of the equation x4 + y4 = 
2z2 is x = y = z = 1. 
[Hint: Any solution of the given equation also satisfies the equation 
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