
CHAPTER 

7 
EULER'S GENERALIZATION OF 

FERMAT'S THEOREM 

Euler calculated without apparent effort, just as men breathe, as 
eagles sustain themselves in the air. 

ARAGO 

7.1 LEONHARD EULER 

The importance of Fermat's work resides not so much in any contribution to the 
mathematics of his own day, but rather in its animating effect on later generations 
of mathematicians. Perhaps the greatest disappointment of Fermat's career was his 
inability to interest others in his new number theory. A century was to pass before a 
first-class mathematician, Leonhard Euler (1707-1783), either understood or appre­
ciated its significance. Many of the theorems announced without proof by Fermat 
yielded to Euler's skill, and it is likely that the arguments devised by Euler were not 
substantially different from those that Fermat said he possessed. 

The key figure in 18th century mathematics, Euler was the son of a Lutheran 
pastor who lived in the vicinity of Basel, Switzerland. Euler's father earnestly wished 
him to enter the ministry and sent his son, at the age of 13, to the University of Basel to 
study theology. There the young Euler met Johann Bernoulli-then one of Europe's 
leading mathematicians-and befriended Bernoulli's two sons, Nicolaus and Daniel. 
Within a short time, Euler broke off the theological studies that had been selected for 
him to address himself exclusively to mathematics. He received his master's degree 
in 1723, and in 1727 at the age of 19, he won a prize from the Paris Academy of 
Sciences for a treatise on the most efficient arrangement of ship masts. 
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Leonhard Euler 
(1707-1783) 

(Dover Publications, Inc.) 

Where the 17th century had been an age of great amateur mathematicians, the 
18th century was almost exclusively an era of professionals-university professors 
and members of scientific academies. Many of the reigning monarchs delighted in 
regarding themselves as patrons of learning, and the academies served as the in­
tellectual crown jewels of the royal courts. Although the motives of these rulers 
may not have been entirely philanthropic, the fact remains that the learned societies 
constituted important agencies for the promotion of science. They provided salaries 
for distinguished scholars, published journals of research papers on a regular ba­
sis, and offered monetary prizes for scientific discoveries. Euler was at different 
times associated with two of the newly formed academies, the Imperial Academy at 
St. Petersburg (1727-1741; 1766-1783) and the Royal Academy in Berlin (1741-
1766). In 1725, Peter the Great founded the Academy of St. Petersburg and at­
tracted a number ofleading mathematicians to Russia, including Nicolaus and Daniel 
Bernoulli. On their recommendation, an appointment was secured for Euler. Because 
of his youth, he had recently been denied a professorship in physics at the Univer­
sity of Basel and was only too ready to accept the invitation of the Academy. In 
St. Petersburg, he soon came into contact with the versatile scholar Christian 
Goldbach (of the famous conjecture), a man who subsequently rose from professor 
of mathematics to Russian Minister of Foreign Affairs. Given his interests, it seems 
likely that Goldbach was the one who first drew Euler's attention to the work of 
Fermat on the theory of numbers. 

Euler eventually tired of the political repression in Russia and accepted the call 
of Frederick the Great to become a member of the Berlin Academy. The story is told 
that, during a reception at Court, he was kindly received by the Queen Mother who 
inquired why so distinguished a scholar should be so timid and reticent; he replied, 
"Madame, it is because I have just come from a country where, when one speaks, 
one is hanged." However, flattered by the warmth of the Russian feeling toward him 
and unendurably offended by the contrasting coolness of Frederick and his court, 
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Euler returned to St. Petersburg in 1766 to spend his remaining days. Within two or 
three years of his return, Euler became totally blind. 

However, Euler did not permit blindness to retard his scientific work; aided by 
a phenomenal memory, his writings grew to such enormous proportions as to be 
virtually unmanageable. Without a doubt, Euler was the most prolific writer in the 
entire history of mathematics. He wrote or dictated over 700 books and papers in his 
lifetime, and left so much unpublished material that the St. Petersburg Academy did 
not finish printing all his manuscripts until47 years after his death. The publication 
of Euler's collected works was begun by the Swiss Society of Natural Sciences in 
1911 and it is estimated that more than 75large volumes will ultimately be required 
for the completion of this monumental project. The best testament to the quality of 
these papers may be the fact that on 12 occasions they won the coveted biennial 
prize of the French Academy in Paris. 

During his stay in Berlin, Euler acquired the habit of writing memoir after 
memoir, placing each when finished at the top of a pile of manuscripts. Whenever 
material was needed to fill the Academy's journal, the printers helped themselves 
to a few papers from the top of the stack. As the height of the pile increased more 
rapidly than the demands made upon it, memoirs at the bottom tended to remain in 
place a long time. This explains how it happened that various papers of Euler were 
published, when extensions and improvements of the material contained in them had 
previously appeared in print under his name. We might also add that the manner in 
which Euler made his work public contrasts sharply with the secrecy customary in 
Fermat's time. 

7.2 EULER'S Pill-FUNCTION 

This chapter deals with that part of the theory arising out of the result known as Euler's 
Generalization of Fermat's Theorem. In a nutshell, Euler extended Fermat's theorem, 
which concerns congruences with prime moduli, to arbitrary moduli. While doing so, 
he introduced an important number-theoretic function, described in Definition 7.1. 

Definition 7.1. For n ;::: 1, let ¢(n) denote the number of positive integers not exceeding 
n that are relatively prime ton. 

As an illustration of the definition, we find that c/>(30) = 8; for, among the 
positive integers that do not exceed 30, there are eight that are relatively prime to 30; 
specifically, 

1, 7, 11, 13, 17,19,23,29 

Similarly, for the first few positive integers, the reader may check that 

cf>(l) = 1, c/>(2) = 1, c/>(3) = 2, c/>(4) = 2, c/>(5) = 4, 

c/>(6) = 2, c/>(7) = 6, ... 

Notice that c/>(1) = 1, because gcd(1, 1) = 1. In the event n > 1, then 
gcd(n, n) = n # 1, so that cf>(n) can be characterized as the number of integers 
less than n and relatively prime to it. The function cf> is usually called the Euler 
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phi-function (sometimes, the indicator or totient) after its originator; the functional 
notation cp(n ), however, is credited to Gauss. 

If n is a prime number, then every integer less than n is relatively prime to 
it; whence, cp(n) = n - 1. On the other hand, if n > 1 is composite, then n has a 
divisor d such that 1 < d < n. It follows that there are at least two integers among 
1, 2, 3, ... , n that are not relatively prime ton, namely, d and n itself. As a result, 
cp(n) ::::: n - 2. This proves that for n > 1, 

cp(n) = n- 1 if and only if n is prime 

The first item on the agenda is to derive a formula that will allow us to calculate 
the value of cp(n) directly from the prime-power factorization of n. A large step in 
this direction stems from Theorem 7 .1. 

Theorem 7.1. If p is a prime and k > 0, then 

cp(pk) = pk - pk-1 = pk ( 1 - ~) 

Proof. Clearly, gcd(n, pk) = 1 if and only if p f n. There are pk-1 integers between 
1 and pk divisible by p, namely, 

p, 2p, 3p, ... '(pk-1)p 

Thus, the set {1, 2, ... , pk} contains exactly pk- pk-1 integers that are relatively 
prime to pk, and so by the definition of the phi-function, cp(pk) = pk - pk-1. 

For an example, we have 

¢(9) = ¢(32) = 32 - 3 = 6 

the six integers less than and relatively prime to 9 being 1, 2, 4, 5, 7, 8. To give a 
second illustration, there are 8 integers that are less than 16 and relatively prime to 
it; they are 1, 3, 5, 7, 9, 11, 13, 15. Theorem 7.1 yields the same count: 

¢(16) = ¢(24) = 24 - 23 = 16- 8 = 8 

We now know how to evaluate the phi-function for prime powers, and our aim 
is to obtain a formula for cp(n) based on the factorization of n as a product of primes. 
The missing link in the chain is obvious: Show that ¢ is a multiplicative function. 
We pave the way with an easy lemma. 

Lemma. Given integers a, b, c, gcd(a, be)= 1 if and only if gcd(a, b)= 1 and 
gcd(a, c) = 1. 

Proof. First suppose that gcd(a, be) = 1, and put d = gcd(a, b). Then d I a and d I b, 
whence d I a and d I be. This implies that gcd(a, be) ~ d, which forces d = 1. Similar 
reasoning gives rise to the statement gcd(a, c) = 1. 

For the other direction, take gcd(a, b)= 1 = gcd(a, c) and assume that 
gcd(a, be)= d1 > 1. Then d1 must have a prime divisor p. Because d1 I be, it follows 
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that pI be; in consequence, pI b or pI c. If pI b, then (by virtue of the fact that pI a) 
we have gcd(a, b):::=: p, a contradiction. In the same way, the condition p 1 c leads 
to the equally false conclusion that gcd(a, c):::=: p. Thus, d1 = 1 and the lemma is 
proven. 

Theorem 7.2. The function¢ is a multiplicative function. 

Proof. It is required to show that c/J(mn) = c/J(m )¢(n ), wherever m and n have no 
common factor. Because ¢(1) = 1, the result obviously holds if either morn equals 
1. Thus, we may assume that m > 1 and n > 1. Arrange the integers from 1 to mn in 
m columns of n integers each, as follows: 

m+ 1 

2m+ 1 

(n -1)m + 1 

2 
m+2 

2m+2 

(n- 1)m + 2 

r 
m+r 

2m+r 

(n -1)m + r 

... m 

2m 

3m 

nm 

We know that ¢(mn) is equal to the number of entries in this array that are relatively 
prime to mn; by virtue of the lemma, this is the same as the number of integers that 
are relatively prime to both m and n. 

Before embarking on the details, it is worth commenting on the tactics to be 
adopted: Because gcd(qm + r, m) = gcd(r, m), the numbers in the rth column are 
relatively prime to m if and only if r itself is relatively prime to m. Therefore, only 
¢(m) columns contain integers relatively prime tom, and every entry in the column 
will be relatively prime to m. The problem is one of showing that in each of these 
¢(m) columns there are exactly ¢(n) integers that are relatively prime ton; for then 
altogether there would be ¢(m )¢(n) numbers in the table that are relatively prime to 
both m and n. 

Now the entries in the rth column (where it is assumed that gcd(r, m) = 1) are 

r, m + r, 2m+ r, ... , (n- 1)m + r 

There are n integers in this sequence and no two are congruent modulo n. Indeed, 
if 

km + r = jm + r (mod n) 

with 0 :S k < j < n, it would follow that km = jm (mod n). Because gcd(m, n) = 1, 
we could cancel m from both sides of this congruence to arrive at the contradiction 
that k = j (mod n ). Thus, the numbers in the rth column are congruent modulo n to 
0, 1, 2, ... , n- 1, in some order. But if s = t (mod n), then gcd(s, n) = 1 if and only 
if gcd(t , n) = 1. The implication is that the rth column contains as many integers that 
are relatively prime ton as does the set {0, 1, 2, ... , n- 1}, namely, ¢(n) integers. 
Therefore, the total number of entries in the array that are relatively prime to both m 
and n is ¢(m )¢(n ). This completes the proof of the theorem. 

With these preliminaries in hand, we now can prove Theorem 7.3. 
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Theorem 7 .3. If the integer n > 1 has the prime factorization n = p~1 p~2 · · · p~' , then 

c/>(n) = (P~~ _ p~~-1) (P~2 _ p~2-1) ... (P~' _ P~'-1) 

= n ( 1 - ;J ( 1 - ;J · · · ( 1 - ;J 
Proof. We intend to use induction on r, the number of distinct prime factors of n. By 
Theorem 7.1, the result is true for r = 1. Suppose that it holds for r = i. Because 

d ( kl k2 k, k,+!) 1 gc P1 P2 · · ·Pi • Pi+1 = 
the definition of multiplicative function gives 

"'(( kl k,) k,+!) "'( k! k,)"'( k,+!) '~" P1 ···Pi Pi+1 = '~" P1 ···Pi '~" Pi+1 

= ¢ (P~~ ... p~·) (P~;{- p~;;-1) 
Invoking the induction assumption, the first factor on the right-hand side becomes 

¢ (P~~ p~2 ... p~·) = (P~~ _ p~~-1) (P~2 _ p~2-1) ... (p~' _ p~·-1) 

and this serves to complete the induction step, and the proof. 

Example 7.1. Let us calculate the value ¢(360), for instance. The prime-power de­
composition of 360 is 23 · 32 · 5, and Theorem 7.3 tells us that 

¢(360) = 360 ( 1 - ~) ( 1 - ~) ( 1 - ~) 
1 2 4 

= 360 . - . - . - = 96 
2 3 5 

The sharp-eyed reader will have noticed that, save for ¢ ( 1) and ¢ (2 ), the values of 
¢(n) in our examples are always even. This is no accident, as the next theorem shows. 

Theorem 7 .4. For n > 2, ¢(n) is an even integer. 

Proof. First, assume that n is a power of 2, let us say that n = 2k, with k :::=: 2. By 
Theorem 7.3, 

c/>(n) = ¢(2k) = 2k ( 1- ~) = 2k-1 

an even integer. If n does not happen to be a power of 2, then it is divisible by an odd 
prime p; we therefore may write n as n = pkm, where k :::=: 1 and gcd(pk, m) = 1. 
Exploiting the multiplicative nature of the phi-function, we obtain 

c/>(n) = ¢(pk)¢(m) = pk-1(p- 1)¢(m) 

which again is even because 21 p - 1. 

We can establish Euclid's theorem on the infinitude of primes in the following 
new way. As before, assume that there are only a finite number of primes. Call them 
p,, P2 •... , Pr andconsidertheintegern = P1P2 · · · Pr· Wearguethatifl <aS n, 
then gcd(a, n) # 1. For, the Fundamental Theorem of Arithmetic tells us that a has 
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a prime divisor q. Because p 1, p2 , ... , p, are the only primes, q must be one of 
these Pi, whence q In; in other words, gcd(a, n) ~ q. The implication of all this is 
that </J(n) = 1, which clearly is impossible by Theorem 7 .4. 

PROBLEMS 7.2 

1. Calculate ¢(1001), ¢(5040), and ¢(36,000). 
2. Verify that the equality Q>(n) = Q>(n + 1) = tf>(n + 2) holds when n = 5186. 
3. Show that the integers m = 3k · 568 and n = 3k · 638, where k ~ 0, satisfy 

simultaneously 

r(m) = r(n), a(m) = a(n), and 

4. Establish each of the assertions below: 
(a) If n is an odd integer, then ¢(2n) = tf>(n ). 
(b) If n is an even integer, then ¢(2n) = 2¢(n). 
(c) ¢(3n) = 3¢(n) if and only if 31 n. 
(d) ¢(3n) = 2¢(n) if and only if 3 J n. 
(e) tf>(n) = n/2 if and only if n = 2k for some k ~ 1. 

tf>(m) = tf>(n) 

[Hint: Write n = 2k N, where N is odd, and use the condition Q>(n) = n/2 to show 
that N = 1.] 

5. Prove that the equation tf>(n) = tf>(n + 2) is satisfied by n = 2(2p- 1) whenever p and 
2p- 1 are both odd primes. 

6. Show that there are infinitely many integers n for which tf>(n) is a perfect square. 
[Hint: Consider the integers n = 22k+I fork = 1, 2, .... ] 

7. Verify the following: 
(a) For any positive integer n, !.Jn ::S tf>(n) ::S n. 

[Hint: Writen = 2ko p~' · .. p~', so¢(n) = 2ko-l p~'- 1 · · · p~'- 1 (pl - 1) · · · (p, - 1). 
Now use the inequalities p- 1 > ,JP and k- ! ~ k/2 to obtain t/>(n) ~ 
2k0-l kJ/2 k,/2 ] 

P1 ·· · Pr · 
(b) If the integer n > 1 has r distinct prime factors, then tf>(n) ~ n /2'. 
(c) If n > 1 is a composite number, then tf>(n) ::S n- .Jfl. 

[Hint: Let p be the smallest prime divisor of n, so that p ::S .Jrl. Then 
Q>(n) ::S n(1 -1/p).] 

8. Prove that if the integer n has r distinct odd prime factors, then 2' ltf>(n ). 
9. Prove the following: 

(a) If n and n + 2 are a pair of twin primes, then Q>(n + 2) = tf>(n) + 2; this also holds 
for n = 12, 14, and 20. 

(b) If p and 2p + 1 are both odd primes, then n = 4p satisfies Q>(n + 2) = tf>(n) + 2. 
10. If every prime that divides n also divides m, establish that tf>(nm) = ntf>(m); in particular, 

¢(n2) = ntf>(n) for every positive integer n. 
11. (a) If tf>(n) In- 1, prove that n is a square-free integer. 

[Hint: Assume that n has the prime factorization n = p~' p~2 • • • p~', where k1 ~ 2. 
Then PI lt/>(n), whence PI In- 1, which leads to a contradiction.] 

(b) Show that if n = 2k or 2k3j' with k and j positive integers, then Q>(n) In. 
12. If n = p~' p~2 • • • p~', derive the following inequalities: 

(a) a(n)Q>(n) ~ n2(1 - 1/ pi)(l - 1/ p~) · · · (1 - 1/ p;). 
(b) r(n)t/>(n) ~ n. 

[Hint: Show that r(n)tf>(n) ~ 2' · n(1/2)'.] 



136 ELEMENTARY NUMBER THEORY 

13. Assuming that dIn, prove that ¢(d) I ¢(n). 
[Hint: Work with the prime factorizations of d and n.] 

14. Obtain the following two generalizations of Theorem 7.2: 
(a) For positive integers m and n, where d = gcd(m, n), 

¢(d) 
¢(m)¢(n) = rjJ(mn)d 

(b) For positive integers m and n, 

¢(m)¢(n) = ¢(gcd(m, n))¢(1cm(m, n)) 

15. Prove the following: 
(a) There are infinitely many integers n for which ¢(n) = nj3. 

[Hint: Consider n = 2k3j, where k and j are positive integers.] 
(b) There are no integers n for which ¢(n) = nj4. 

16. Show that the Goldbach conjecture implies that for each even integer 2n there exist 
integers n1 and nz with ¢(nt) + ¢(nz) = 2n. 

17. Given a positive integer k, show the following: 
(a) There are at most a finite number of integers n for which ¢(n) = k. 
(b) If the equation ¢(n) = k has a unique solution, say n = n0, then 41 no. 

[Hint: See Problems 4(a) and 4(b).] 
A famous conjecture of R. D. Carmichael (1906) is that there is no k for which the 
equation ¢(n) = k has precisely one solution; it has been proved that any counterex­
ample n must exceed 1010000000. 

18. Find all solutions of ¢(n) = 16 and ¢(n) = 24. 
[Hint: If n = p~' p~2 • • • p~' satisfies ¢(n) = k, then n = [k/IT(p;- 1)]ITp;. Thus the 
integers d; =Pi - 1 can be determined by the conditions (1) d; I k, (2) d; + 1 is prime, 
and (3) kfiTd; contains no prime factor not in ITp;.] 

19. (a) Prove that the equation ¢(n) = 2p, where pis a prime number and 2p + 1 is com­
posite, is not solvable. 

(b) Prove that there is no solution to the equation ¢(n) = 14, and that 14 is the smallest 
(positive) even integer with this property. 

20. If pis a prime and k ~ 2, show that ¢(¢(pk)) = pk-2¢((p- 1)2). 

21. Verify that ¢(n) a(n) is a perfect square when n = 63457 = 23 · 31 · 89. 

7.3 EULER'S THEOREM 

As remarked earlier, the first published proof of Fermat's theorem (namely that 
a P-I = 1 (mod p) if p l a) was given by Euler in 1736. Somewhat later, in 1760, he 
succeeded in generalizing Fermat's theorem from the case of a prime p to an arbitrary 
positive integer n. This landmark result states: If gcd(a, n) = 1, then a<P(n) = 1 
(mod n). 

For example, putting n = 30 and a = 11, we have 

As a prelude to launching our proof of Euler's generalization of Fermat's theo­
rem, we require a preliminary lemma. 
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Lemma. Let n > 1 and gcd(a, n) = 1. If at. a2, ... , a<f>(n) are the positive integers 
less than nand relatively prime ton, then 

are congruent modulo n to at. a2, ... , a<f>(n) in some order. 

Proof. Observe that no two ofthe integers aat, aa2, ... , aa<f>(n) are congruent modulo 
n. For if aa; = aa j (mod n), with 1 ::; i < j ::; ¢(n), then the cancellation law yields 
a; = a j (mod n ), and thus a; = a j, a contradiction. Furthermore, because gcd(a; , n) = 
1 for all i and gcd(a, n) = 1, the lemma preceding Theorem 7.2 guarantees that each 
of the aa; is relatively prime ton. 

Fixing on a particular aa;, there exists a unique integer b, where 0::; b < n, for 
which aa; = b (mod n ). Because 

gcd(b, n) = gcd(aa;, n) = 1 

b must be one of the integers at, a2, ... , a<f>(n)· All told, this proves that the numbers 
aat. aa2, ... , aa<f>(n) and the numbers at. a2, ... , a<f>(n) are identical (modulo n) in a 
certain order. 

Theorem 7.5 Euler. If n :::: 1 and gcd(a, n) = 1, then a<f><n) = 1 (mod n). 

Proof. There is no harm in taking n > 1. Let at. a2, ... , a<f>(n) be the positive integers 
less than n that are relatively prime ton. Because gcd(a, n) = 1, it follows from the 
lemma that aat, aa2, ... , aa<f>(n) are congruent, not necessarily in order of appearance, 
to at. a2, ... , a<f>(n)· Then 

aat =a~ (mod n) 

aa2 =a; (mod n) 

aa</>(n) = a~(n) (mod n) 

where a~, a;, ... , a~(n) are the integers at. a2, ... , a<f>(n) in some order. On taking the 
product of these if>(n) congruences, we get 

and so 

(aat)(aa2) · · · (aa<f>(n)) =a~ a;··· a~(n) (mod n) 

= ata2 · · · a<f>(n) (mod n) 

a<f>(n)(ata2 · · · a</>(n)) = ata2 · · · a<f>(n) (mod n) 

Because gcd(a;, n) = 1 for each i, the lemma preceding Theorem 7.2 implies that 
gcd(ata2 · .. a<f>(n), n) = 1. Therefore, we may divide both sides of the foregoing 
congruence by the common factor ata2 · · · a<f>(n)• leaving us with 

a<f>(n) = 1 (mod n) 

This proof can best be illustrated by carrying it out with some specific numbers. 
Let n = 9, for instance. The positive integers less than and relatively prime to 9 are 

1,2,4,5, 7,8 
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These play the role of the integers a,, a2, .•. , acf>(n) in the proof of Theorem 7.5. If 
a = -4, then the integers aai are 

-4,-8,-16,-20,-28,-32 

where, modulo 9, 

-4=5 -8=1 -16::2 -20=7 -28=8 -32=4 

When the above congruences are all multiplied together, we obtain 

(-4)(-8)(-16)(-20)(-28)(-32) = 5. 1 · 2. 7. 8. 4 (mod 9) 

which becomes 

(1 . 2. 4. 5 . 7. 8)( -4)6 = (1 . 2. 4. 5 . 7. 8) (mod 9) 

Being relatively prime to 9, the six integers 1, 2, 4, 5, 7, 8 may be canceled succes­
sively to give 

( -4)6 = 1 (mod 9) 

The validity of this last congruence is confirmed by the calculation 

(-4)6 = 46 = (64)2 = 12 = 1 (mod 9) 

Note that Theorem 7.5 does indeed generalize the one credited to Fermat, which 
we proved earlier. For if p is a prime, then ¢(p) = p - 1; hence, when gcd(a , p) = 
1, we get 

ap-! = acf>(p) = 1 (mod p) 

and so we have the following corollary. 

Corollary Fermat. If pis a prime and p fa, then aP-1 = 1 (mod p). 

Example 7.2. Euler's theorem is helpful in reducing large powers modulo n. To cite a 
typical example, let us find the last two digits in the decimal representation of 3256 . This 
is equivalent to obtaining the smallest nonnegative integer to which 3256 is congruent 
modulo 100. Because gcd(3, 100) = 1 and 

¢(100) = ¢(22 
0 52)= 100 ( 1 - ~) ( 1 - ~) = 40 

Euler's theorem yields 

340 = 1 (mod 100) 

By the Division Algorithm, 256 = 6 · 40 + 16; whence 

3256 = 36-40+16 = (340)6316 = 316 (mod 100) 

and our problem reduces to one of evaluating 316 , modulo 100. The method of succes­
sive squaring yields the congruences 

32 = 9 (mod 100) 

34 = 81 (mod 100) 

38 = 61 (mod 100) 

316 = 21 (mod 100) 
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There is another path to Euler's theorem, one which requires the use of Fermat's 
theorem. 

Second Proof of Euler's Theorem. To start, we argue by induction that if p l a (p a 
prime), then 

(1) 

When k = 1, this assertion reduces to the statement of Fermat's theorem. Assuming 
the truth ofEq. (1) for a fixed value of k, we wish to show that it is true with k replaced 
by k + 1. 

Because Eq. (1) is assumed to hold, we may write 

a<P<Pk) = 1 + qpk 

for some integer q. Also notice that 

cp(pk+l) = pk+1- pk = p(pk- pk-1) = pcp(pk) 

Using these facts, along with the binomial theorem, we obtain 

a<P<Pk+') = aP<I>(pk) 

= (a<I><Pkl)P 

= (1 + qpk)P 

= 1 + (f) (qpk) + ( ~) (qpk)2 + ... 

+ ( p ) (qpk)p-1 + (qpk)p 
p-1 

= 1 + (f) (qpk) (mod pk+1) 

But pI (f), and so pk+1 I ( f )(qpk). Thus, the last-written congruence becomes 

a<P<Pk+') = 1 (mod pk+1) 

completing the induction step. 
Let gcd(a , n) = 1 and n have the prime-power factorization n = p~' p~2 • • • p~'. 

In view of what already has been proven, each of the congruences 

a<P<P~') = 1 (mod p~') i = 1, 2, ... , r (2) 

holds. Noting that cp(n) is divisible by ¢(l' ), we may raise both sides of Eq. (2) to the 

power ¢(n)!¢(p~') and arrive at 

a<P(n) = 1 (mod p~') i = 1, 2, ... , r 

Inasmuch as the moduli are relatively prime, this leads us to the relation 

a<P<n) = 1 (mod p~' p~2 • • • p~') 

or a<P<n) = 1 (mod n ). 

The usefulness ofEuler's theorem in number theory would be hard to exaggerate. 
It leads, for instance, to a different proof of the Chinese Remainder Theorem. In other 
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words, we seek to establish that if gcd(ni , n j) = 1 fori i= j, then the system oflinear 
congruences 

i = 1, 2, ... , r 

admits a simultaneous solution. Let n = n1n2 · · · nn and put Ni = nfni for n = 
1, 2, ... , r. Then the integer 

X= a!Nt(nt) + a2Nt<n2) + ... + arN1(n,) 

fulfills our requirements. To see this, first note that Nj = 0 (mod ni) whenever i i= j; 
whence, 

x = aiNf<n,) (mod ni) 

But because gcd(Ni, ni) = 1, we have 

Nf(n,) = 1 (mod ni) 

and so x = ai (mod ni) for each i. 
As a second application of Euler's theorem, let us show that if n is an odd integer 

that is not a multiple of 5, then n divides an integer all of whose digits are equal to 
1 (for example, 7 1111111). Because gcd(n , 10) = 1 and gcd(9, 10) = 1, we have 
gcd(9n, 10) = 1. Quoting Theorem 7.5, again, 

1Q'I><9n) = 1 (mod 9n) 

This says that 10¢(9nl - 1 = 9nk for some integer k or, what amounts to the same 
thing, 

10¢(9n) _ 1 
kn=----

9 
The right-hand side of this expression is an integer whose digits are all equal to 1, 
each digit of the numerator being clearly equal to 9. 

PROBLEMS 7.3 

1. Use Euler's theorem to establish the following: 
(a) For any integer a, a 37 = a (mod 1729). 

[Hint: 1729 = 7 · 13 · 19.] 
(b) For any integer a, a 13 = a (mod 2730). 

[Hint: 2730 = 2 · 3 · 5 · 7 · 13.] 
(c) For any odd integer a, a 33 =a (mod 4080). 

[Hint: 4080 = 15 · 16 · 17.] 
2. Use Euler's theorem to confirm that, for any integer n ~ 0, 

5111032n+9- 7 

3. Prove that 215 - 23 divides a 15 - a 3 for any integer a. 
[Hint: 215 - 23 = 5 · 7 · 8 · 9 · 13.] 

4. Show that if gcd(a, n) = gcd(a- 1, n) = 1, then 

1 +a+ a2 + · · · + a.P<n)- 1 = 0 (mod n) 

[Hint: Recall that a.P<n)- 1 =(a- 1)(a.P(n)-1 + · · · + a2 +a+ 1).] 
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5. If m and n are relatively prime positive integers, prove that 

m¢(n) + n¢(m) = 1 (mod mn) 

6. Fill in any missing details in the following proof of Euler's theorem: Let p be a prime 
divisorofn and gcd(a, p) = 1. By Fermat's theorem, aP-1 = 1 (mod p), sothataP-1 = 
1 + tp for some t. Therefore aP<P-1) = (1 + tp)P = 1 + ( f )(tp) + · .. + (tp)P = 1 
(mod p 2) and, by induction, aPk-'<p-1) = 1 (mod pk), where k = 1, 2, .... Raise both 
sidesofthiscongruencetothe¢(n)/pk-1(p -l)powertogeta¢(n) = 1 (modpk). Thus, 
a<t><n) = 1 (mod n). 

7. Find the units digit of 3100 by means of Euler's theorem. 
8. (a) If gcd(a, n) = 1, show that the linear congruence ax= b (mod n) has the solution 

x = ba¢(n)-1 (mod n). 
(b) Use part (a) to solve the linear congruences 3x = 5 (mod 26), 13x = 2 (mod 40), 

and lOx = 21 (mod 49). 
9. Use Euler's theorem to evaluate 2100000 (mod 77). 

10. For any integer a, show that a and a4n+1 have the same last digit. 
11. For any prime p, establish each of the assertions below: 

(a) r(p!) = 2r((p - 1)!). 
(b) a(p!) = (p + l)a((p- 1)!). 
(c) ¢(p!) = (p - 1)1/J((p - 1)!). 

12. Given n ::=: 1, a set of ¢(n) integers that are relatively prime to n and that are incongruent 
modulo n is called a reduced set of residues modulo n (that is, a reduced set of residues 
are those members of a complete set of residues modulo n that are relatively prime to n ). 
Verify the following: 
(a) The integers -31, -16, -8, 13, 25, 80 form a reduced set of residues modulo 9. 
(b) The integers 3, 32, 33, 34 , 35, 36 form a reduced set of residues modulo 14. 
(c) The integers 2, 22 , 23, ... , 218 form a reduced set of residues modulo 27. 

13. If p is an odd prime, show that the integers 

p-1 
---

2 

p-1 
-2, -1, 1, 2, ... , -2-

form a reduced set of residues modulo p. 

7.4 SOME PROPERTIES OF THE PHI-FUNCTION 

The next theorem points out a curious feature of the phi-function; namely, that the 
sum of the values of </J(d), as d ranges over the positive divisors of n, is equal to n 
itself. This was first noticed by Gauss. 

Theorem 7.6 Gauss. For each positive integer n ::=: 1, 

n = L¢(d) 
din 

the sum being extended over all positive divisors of n. 

Proof. The integers between 1 and n can be separated into classes as follows: If d is a 
positive divisor of n, we put the integer min the class sd provided that gcd(m, n) =d. 
Stated in symbols, 

Sd = {m I gcd(m, n) = d; 1 ::S m ::s n} 
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Now gcd(m , n) = d if and only if gcd(m I d , n I d) = 1. Thus, the number of integers 
in the class Sd is equal to the number of positive integers not exceeding n I d that are 
relatively prime ton I d; in other words, equal to rjJ(n I d). Because each of then integers 
in the set { 1, 2, ... , n} lies in exactly one class Sd, we obtain the formula 

But as d runs through all positive divisors of n, so does nld; hence, 

which proves the theorem. 

Example 7.3. A simple numerical example of what we have just said is provided by 
n = 10. Here, the classes Sd are 

St={1,3,7,9} 

s2 = {2, 4, 6, 8} 

Ss = {5} 

Sw = {10} 

These contain ¢(10) = 4, ¢(5) = 4, ¢(2) = 1, and ¢(1) = 1 integers, respectively. 
Therefore, 

I: ¢(d)= ¢(10) + ¢(5) + ¢(2) + ¢(1) 
d 110 

= 4 + 4 + 1 + 1 = 10 

It is instructive to give a second proof of Theorem 7 .6, this one depending on 
the fact that ¢ is multiplicative. The details are as follows. If n = 1, then clearly 

I::¢<d) = I::¢<d) = ¢(1) = 1 = n 
din dll 

Assuming that n > 1, let us consider the number-theoretic function 

F(n) = L¢(d) 
din 

Because ¢ is known to be a multiplicative function, Theorem 6.4 asserts that F is 
also multiplicative. Hence, if n = p~1 p~2 • • • p~' is the prime factorization of n, then 
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For each value of i, 

F(p~') = L ljJ(d) 

dip~i 

= ¢(1) + ljJ(pi) + ljJ(p?) + ljJ(pf) + ... + ljJ(p~') 
= 1 +(Pi - 1) + (p?- Pi)+ (pf - P?) + · · · + <l' - P~'-') 

k· =p/ 
because the terms in the foregoing expression cancel each other, save for the term 
l'. Knowing this, we end up with 

F( ) k1 kz k, 
n = P1 Pz · · · Pr = n 

and so 

n = L¢(d) 
din 

as desired. 
We should mention in passing that there is another interesting identity that in­

volves the phi-function. 

Theorem 7.7. For n > 1, the sum of the positive integers less than n and relatively 
prime ton is !ntf>(n). 

Proof. Let a 1, a2 , ... , aq,(n) be the positive integers less than nand relatively prime to 
n. Now because gcd(a, n) = 1 if and only if gcd(n- a, n) = 1, the numbers n-at, 
n- az, ... , n- aq,(n) are equal in some order to a,, az, ... , aq,(n)· Thus, 

a, + az + · · · + aq,(n) = (n -at)+ (n - az) + · · · + (n - aq,(n)) 

= t/>(n)n - (at + az + · · · + aq,(n)) 

Hence, 

2(a, + az + · · · + aq,(n)) = Q>(n)n 

leading to the stated conclusion. 

Example 7.4. Consider the case where n = 30. The ¢(30) = 8 integers that are less 
than 30 and relatively prime to it are 

1,7, 11, 13, 17,19,23,29 

In this setting, we find that the desired sum is 

1 
1 + 7 + 11 + 13 + 17 + 19 + 23 + 29 = 120 = 2. 30. 8 

Also note the pairings 

1 + 29 = 30 7+23=30 11 + 19 = 30 13 + 17 = 30 
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This is a good point at which to give an application of the Mobius inversion 
formula. 

Theorem 7.8. For any positive integer n, 

c{J(n) = n L J-L(d) 
din d 

Proof The proof is deceptively simple. If we apply the inversion formula to 

F(n) = n = L¢(d) 
din 

the result is 

Let us again illustrate the situation where n = 10. As easily can be seen, 

10 L J-L(d) = 10 [J-L(1) + J-L(2) + J-L(5) + J-L(10)] 
dilO d 2 5 10 

[ 
(-1) (-1) (-1)2 ] 

=10 1+-+-+--
2 5 10 

= 10 1 - - - - + - = 10. - = 4 = ¢(10) [ 1 1 1] 2 
2 5 10 5 

Starting with Theorem 7.8, it is an easy matter to determine the value ofthe phi­
function for any positive integer n. Suppose that the prime-power decomposition of 
n is n = p~1 p~2 ••• p~', and consider the product 

p = n (JL(l) + JL(~j) + · · · + JL(~t)) 
P;ln Pl Pi 

Multiplying this out, we obtain a sum of terms of the form 

or, because JL is known to be multiplicative, 
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where the summation is over the set of divisors d = p~1 p~2 · · · p~' of n. Hence, 
P = Ldln JL(d)jd. It follows from Theorem 7.8 that 

ljJ(n) = n L JL~d) = n IT (J.L(1) + JL(Pi) + ... + J.L(~:i)) 
din p, In P1 Pi 

But JL(p~·) = 0 whenever ai ::=: 2. As a result, the last-written equation reduces to 

IT ( JL(Pi)) IT ( 1 ) ljJ(n) = n JL(1) + -.- = n 1 - ~ 
Pi In pl p, In Pl 

which agrees with the formula established earlier by different reasoning. What is 
significant about this argument is that no assumption is made concerning the multi­
plicative character of the phi-function, only of JL. 

PROBLEMS 7.4 

1. For a positive integer n, prove that 

L(-1tld¢(d) = { 0 
din -n 

if n is even 

if n is odd 

[Hint: If n = 2k N, where N is odd, then 

L:<-1tld¢(d) = L cp(d)- L¢(2kd).] 
din dl2k-IN diN 

2. Confirm that Ld 136 ¢(d) = 36 and Ld 136( -1)36/dcp(d) = 0. 
3. For a positive integer n, prove that Ldln p}(d)fc{J(d) = nj¢(n). 

[Hint: Both sides of the equation are multiplicative functions.] 
4. UseProblem4(c), Section 6.2, to proven Ldln ~-t(d)fd = ¢(n). 

5. If the integer n > 1 has the prime factorization n = p~1 p~2 · · · p~', establish each of the 
following: 
(a) L ~-t(d)cp(d) = (2 - Pt)(2 - pz) · · · (2 - Pr ). 

din 

(b) I:d¢(d) = .. . . (
Pik!+I + 1) (p~k2+l + 1) (p;k,+l + 1) 

d 1 n Pt + 1 P2 + 1 Pr + 1 

(c) L ¢(d)= ( 1 + kt(Pt- 1)) ( 1 + kz(pz -1)) ... ( 1 + k,(p,- 1))· 
din d PI Pz Pr 

[Hint: For part (a), use Problem 3, Section 6.2.] 
6. Verify the formula I:~=I cp(d)[njd] = n(n + 1)/2 for any positive integer n. 

[Hint: This is a direct application of Theorems 6.11 and 7.6.] 
7. If n is a square-free integer, prove that Ld 

1 
n a(dk-! )¢(d) = nk for all integers k ::::: 2. 

8. For a square-free integer n > 1, show that r(n2) = n if and only if n = 3. 
9. Prove that 31 a(3n + 2) and 41 a(4n + 3) for any positive integer n. 
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