
CHAPTER 

8 
PRIMITIVE ROOTS AND INDICES 

... mathematical proofs, like diamonds, are hard as well as clear, and will be 
touched with nothing but strict reasoning. 

JOHN LOCKE 

8.1 THE ORDER OF AN INTEGER MODULO n 

In view of Euler's theorem, we know that a<P<n) = 1 (mod n ), whenever gcd(a , n) = 
1. However, there are often powers of a smaller than a<P<n) that are congruent to 1 
modulo n. This prompts the following definition. 

Definition 8.1. Let n > 1 and gcd(a , n) = 1. The order of a modulo n (in older 
terminology: the exponent to which a belongs modulo n) is the smallest positive integer 
k such that ak = 1 (mod n). 

Consider the successive powers of 2 modulo 7. For this modulus, we obtain the 
congruences 

from which it follows that the integer 2 has order 3 modulo 7. 
Observe that if two integers are congruent modulo n, then they have the same 

order modulo n. For if a = b (mod n) and ak = 1 (mod n ), Theorem 4.2 implies that 
ak = bk (mod n), whence bk = 1 (mod n). 

It should be emphasized that our definition of order modulo n concerns only 
integers a for which gcd(a, n) = 1. Indeed, if gcd(a, n) > 1, then we know from 

147 



148 ELEMENTARY NUMBER THEORY 

Theorem 4. 7 that the linear congruence ax = 1 (mod n) has no solution; hence, the 
relation 

ak = 1 (modn) 

cannot hold, for this would imply that x = ak-1 is a solution of ax= 1 (mod n). 
Thus, whenever there is reference to the order of a modulo n, it is to be assumed 
that gcd(a, n) = 1, even if it is not explicitly stated. 

In the example given previously, we have 2k = 1 (mod 7) whenever k is a 
multiple of 3, where 3 is the order of 2 modulo 7. Our first theorem shows that this 
is typical of the general situation. 

Theorem 8.1. Let the integer a have order k modulo n. Then ah = 1 (mod n) if and 
only if k I h; in particular, k I ¢(n). 

Proof. Suppose that we begin with k 1 h, so that h = jk for some integer j. Because 
ak = 1 (mod n), Theorem 4.2 yields (ak)j = lj (mod n) or ah = 1 (mod n). 

Conversely, let h be any positive integer satisfying ah = 1 (mod n ). By the Division 
Algorithm, there exist q and r such that h = q k + r, where 0 ::S r < k. Consequently, 

ah = aqk+r = (ak)q a' 

By hypothesis, both ah = 1 (mod n) and ak = 1 (mod n), the implication of which is 
that a' = 1 (mod n ). Because 0 ::S r < k, we end up with r = 0; otherwise, the choice 
of k as the smallest positive integer such that ak = 1 (mod n) is contradicted. Hence, 
h = qk, and k I h. 

Theorem 8.1 expedites the computation when we attempt to find the order of 
an integer a modulo n; instead of considering all powers of a, the exponents can be 
restricted to the divisors of cp(n ). Let us obtain, by way of illustration, the order of 
2 modulo 13. Because ¢(13) = 12, the order of 2 must be one of the integers 1, 2, 
3, 4, 6, 12. From 

21 =2 212 = 1 (mod 13) 

it is seen that 2 has order 12 modulo 13. 
For an arbitrarily selected divisor d of cp(n ), it is not always true that there exists 

an integer a having order d modulo n. An example is n = 12. Here ¢(12) = 4, yet 
there is no integer that is of order 4 modulo 12; indeed, we find that 

11 = 52 = 72 = 112 = 1 (mod 12) 

and therefore the only choice for orders is 1 or 2. 
Here is another basic fact regarding the order of an integer. 

Theorem 8.2. If the integer a has order k modulo n, then ai = aj (mod n) if and only 
if i = j (mod k). 

Proof. First, suppose that ai = aj (mod n), where i :=:: j. Because a is relatively 
prime ton, we may cancel a power of a to obtain ai-j = 1 (mod n). According to 
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Theorem 8.1, this last congruence holds only if k I i - j, which is just another way of 
saying thati = j (mod k). 

Conversely, let i = j (mod k). Then we have i = j + qk for some integer q. By 
the definition of k, ak = 1 (mod n), so that 

ai = aHqk = aj(ak)q = aj (mod n) 

which is the desired conclusion. 

Corollary. If a has order k modulo n, then the integers a, a2 , ••• , ak are incongruent 
modulon. 

Proof. If ai = aj (mod n) for 1 ::; i ::; j ::; k, then the theorem ensures that i = 
j (mod k). But this is impossible unless i = j. 

A fairly natural question presents itself: Is it possible to express the order of any 
integral power of a in terms of the order of a? The answer is contained in Theorem 8.3. 

Theorem 8.3. If the integer a has order k modulo n and h > 0, then ah has order 
kjgcd(h, k) modulo n. 

Proof. Let d = gcd(h, k). Then we may write h = h1d and k = k1d, with 
gcd (h 1 , k1) = 1. Clearly, 

(ahl' = (ah'd)kfd = (ak)h' = 1 (mod n) 

If ah is assumed to have order r modulo n, then Theorem 8.1 asserts that r 1 k 1 . On the 
other hand, because a has order k modulo n, the congruence 

ahr = (ah)' = 1 (mod n) 

indicates that k I hr; in other words, k1d I h1dr or k1 I h1r. But gcd(k1, h1) = 1, and 
therefore k1 I r. This divisibility relation, when combined with the one obtained earlier, 
gives 

k k 
r=k1 =- = ---

d gcd(h, k) 

proving the theorem. 

The preceding theorem has a corollary for which the reader may supply a proof. 

Corollary. Let a have order k modulo n. Then ah also has order k if and only if 
gcd(h , k) = 1. 

Let us see how all this works in a specific instance. 

Example 8.1. The following table exhibits the orders modulo 13 of the positive 
integers less than 13: 

Integer I 2 3 4 5 6 7 8 9 10 11 12 

12 3 6 4 12 12 4 3 6 12 2 Order 
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We observe that the order of 2 modulo 13 is 12, whereas the orders of 22 and 23 

are 6 and 4, respectively; it is easy to verify that 

12 
6=---­

gcd(2, 12) 
and 

12 
4=---­

gcd(3, 12) 

in accordance with Theorem 8.3. The integers that also have order 12 modulo 13 are 
powers 2k for which gcd(k, 12) = 1; namely, 

21 = 2 25 = 6 27 = 11 211 = 7 (mod 13) 

If an integer a has the largest order possible, then we call it a primitive root 
ofn. 

Definition 8.2. If gcd(a , n) = 1 and a is of order rjJ(n) modulo n, then a is a primitive 
root of the integer n. 

To put it another way, n has a as a primitive root if atl><n) = 1 (mod n), but 
ak ¢. 1 (mod n) for all positive integers k < </J(n). 

It is easy to see that 3 is a primitive root of 7, for 

36 = 1 (mod 7) 

More generally, we can prove that primitive roots exist for any prime modulus, which 
is a result of fundamental importance. Although it is possible for a primitive root of 
n to exist when n is not a prime (for instance, 2 is a primitive root of 9), there is no 
reason to expect that every integer n possesses a primitive root; indeed, the existence 
of primitive roots is more often the exception than the rule. 

Example 8.2. Let us show that if Fn = 22" + 1, n > 1, is a prime, then 2 is not a 
primitive root of Fn. (Clearly, 2 is a primitive root of 5 = F1.) From the factorization 
22n+l - 1 = (22" + 1) (22" - 1), we have 

22n+t = 1 (mod Fn) 

which implies thatthe orderof2 modulo Fn does not exceed 2n+I. But if Fn is assumed 
to be prime, then 

rjJ(Fn) = Fn - 1 = 22" 

and a straightforward induction argument confirms that 22" > 2n+l, whenever n > 1. 
Thus, the order of 2 modulo Fn is smaller than rjJ(Fn); referring to Definition 8.2, we 
see that 2 cannot be a primitive root of Fn. 

One of the chief virtues of primitive roots lies in our next theorem. 

Theorem 8.4. Let gcd(a, n) = 1 and let a1, a2, ... , a<f>(n) be the positive integers less 
than nand relatively prime ton. If a is a primitive root of n, then 

a, a 2 , ••• , a<f>(n) 

are congruent modulo n to a1, a2, ... , a<f>(n)• in some order. 
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Proof. Because a is relatively prime ton, the same holds for all the powers of a; hence, 
each ak is congruent modulo n to some one of the ai. The cp(n) numbers in the set 
{a, a 2 , •.. , a<t><n)} are incongruent by the corollary to Theorem 8.2; thus, these powers 
must represent (not necessarily in order of appearance) the integers a 1, a 2 , ... , a</>(n)· 

One consequence of what has just been proved is that, in those cases in which 
a primitive root exists, we can now state exactly how many there are. 

Corollary. If n has a primitive root, then it has exactly ¢(¢(n)) of them. 

Proof. Suppose that a is a primitive root of n. By the theorem, any other primitive 
root of n is found among the members of the set {a, a 2, ... , a<t><nl}. But the number 
of powers ak, 1 ::::; k ::::; cp(n ), that have order cp(n) is equal to the number of integers k 
for which gcd(k, ¢(n)) = 1; there are ¢(¢(n)) such integers, hence, ¢(¢(n)) primitive 
roots ofn. 

Theorem 8.4 can be illustrated by taking a= 2 and n = 9. Because ¢(9) = 6, 
the first six powers of 2 must be congruent modulo 9, in some order, to the positive 
integers less than 9 and relatively prime to it. Now the integers less than and relatively 
prime to 9 are 1, 2, 4, 5, 7, 8, and we see that 

21 = 2 22 = 4 23 = 8 24 = 7 25 = 5 26 = 1 (mod 9) 

By virtue of the corollary, there are exactly ¢(¢(9)) = ¢(6) = 2 primitive roots 
of 9, these being the integers 2 and 5. 

PROBLEMS 8.1 

1. Find the order of the integers 2, 3, and 5: 
(a) modulo 17. 
(b) modulo 19. 
(c) modulo 23. 

2. Establish each of the statements below: 
(a) If a has order hk modulo n, then ah has order k modulo n. 
(b) If a has order 2k modulo the odd prime p, then ak = -1 (mod p ). 
(c) If a has order n- 1 modulo n, then n is a prime. 

3. Prove that ¢(2n - 1) is a multiple of n for any n > 1. 
[Hint: The integer 2 has order n modulo 2n- 1.] 

4. Assume that the order of a modulo n ish and the order of b modulo n is k. Show that the 
order of ab modulo n divides hk; in particular, if gcd(h, k) = 1, then ab has order hk. 

5. Given that a has order 3 modulo p, where p is an odd prime, show that a + 1 must have 
order 6 modulo p. 
[Hint: From a 2 +a+ 1 = 0 (mod p), it follows that (a+ 1i =a (mod p) and 
(a+ 1)3 = -1 (mod p).] 

6. Verify the following assertions: 
(a) The odd prime divisors of the integer n2 + 1 are of the form 4k + 1. 

[Hint: n2 = -1 (mod p), where p is an odd prime, implies that 41 ¢(p) by 
Theorem 8.1.] 

(b) The odd prime divisors of the integer n4 + 1 are of the form 8k + 1. 
(c) The odd prime divisors of the integer n2 + n + 1 that are different from 3 are of the 

form 6k + 1. 
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7. Establish that there are infinitely many primes of each of the forms 4k + 1, 6k + 1, and 
8k + 1. 
[Hint: Assume that there are only finitely many primes of the form 4k + 1; call them 
P1· P2· ... , p,. Consider the integer (2P1P2 · · · Pr? + 1 and apply the previous prob­
lem.] 

8. (a) Prove that if p and q are odd primes and q I aP- 1, then either q I a- 1 or else 
q = 2kp + 1 for some integer k. 
[Hint: Because aP = 1 (mod q ), the order of a modulo q is either 1 or p; in the latter 
case, pI ¢(q).] 

(b) Use part (a) to show that if p is an odd prime, then the prime divisors of 2P - 1 are 
of the form 2kp + 1. 

(c) Find the smallest prime divisors of the integers 217 - 1 and 229 - 1. 
9. Prove that there are infinitely many primes of the form 2kp + 1, where p is an odd prime. 

[Hint: Assume that there are finitely many primes of the form 2kp + 1, call them 
q1, q2, ... , q, and consider the integer (2q 1q2 . · · q,)P- 1.] 

10. (a) Verify that 2 is a primitive root of 19, but not of 17. 
(b) Show that 15 has no primitive root by calculating the orders of 2, 4, 7, 8, 11, 13, and 

14 modulo 15. 
11. Let r be a primitive root of the integer n. Prove that rk is a primitive root of n if and only 

if gcd(k, ¢(n)) = 1. 
12. (a) Find two primitive roots of 10. 

(b) Use the information that 3 is a primitive root of 17 to obtain the eight primitive roots 
of 17. 

13. (a) Prove that if p and q > 3 are both odd primes and q I R P• then q = 2kp + 1 for some 
integer k. 

(b) Find the smallest prime divisors of the repunits R5 = 11111 and R7 = 1111111. 
14. (a) Let p > 5 be prime. If Rn is the smallest repunit for which p I Rn, establish that 

n I p - 1. For example, R8 is the smallest repunit divisible by 73, and 8 172. 
[Hint: The order of 10 modulo pis n.] 

(b) Find the smallest Rn divisible by 13. 

8.2 PRIMITIVE ROOTS FOR PRIMES 

Because primitive roots play a crucial role in many theoretical investigations, a prob­
lem exerting a natural appeal is that of describing all integers that possess primitive 
roots. We shall, over the course of the next few pages, prove the existence of primitive 
roots for all primes. Before doing this, let us turn aside briefly to establish Lagrange's 
theorem, which deals with the number of solutions of a polynomial congruence. 

Theorem 8.5 Lagrange. If p is a prime and 

f(x) = anXn + an-1Xn-1 + · · · + a1x + ao an =/= 0 (mod p) 

is a polynomial of degree n ::: 1 with integral coefficients, then the congruence 

f(x) = 0 (mod p) 

has at most n incongruent solutions modulo p. 

Proof. We proceed by induction on n, the degree off (x ). If n = 1, then our polynomial 
is of the form 

f(x) = a1x + ao 
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Because gcd(a1 , p) = 1, Theorem 4.7 asserts that the congruence a1x = -a0 

(mod p) has a unique solution modulo p. Thus, the theorem holds for n = 1. 
Now assume inductively that the theorem is true for polynomials of degree k - 1, 

and consider the case in which f(x) has degree k. Either the congruence f(x) = 0 
(mod p) has no solutions (and we are finished), or it has at least one solution, call it a. 
If f(x) is divided by x- a, the result is 

f(x) = (x- a)q(x) + r 

in which q(x) is a polynomial of degree k- 1 with integral coefficients and r is an 
integer. Substituting x = a, we obtain 

0 = f(a) =(a- a)q(a) + r = r (mod p) 

and therefore f(x) = (x- a)q(x) (mod p). 
If b is another one of the incongruent solutions of f(x) = 0 (mod p ), then 

0 = f(b) = (b- a)q(b) (mod p) 

Because b- a ¥= 0 (mod p), we may cancel to conclude that q(b) = 0 (mod p); in 
other words, any solution of f(x) = 0 (mod p) that is different from a must satisfy 
q(x) = 0 (mod p). By our induction assumption, the latter congruence can possess at 
most k- 1 incongruent solutions, and therefore f(x) = 0 (mod p) has no more than 
k incongruent solutions. This completes the induction step and the proof. 

From this theorem, we can pass easily to the corollary. 

Corollary. If p is a prime number and d I p - 1, then the congruence 

xd - 1 = 0 (mod p) 

has exactly d solutions. 

Proof. Because dIp- 1, we have p- 1 = dk for some k. Then 

xP- 1 - 1 = (xd - 1)f(x) 

where the polynomial f(x) = xd<k- 1) + xd<k-2) + · · · + xd + 1 has integral 
coefficients and is of degree d(k- 1) = p- 1- d. By Lagrange's theorem, the 
congruence f(x) = 0 (mod p) has at most p- 1 - d solutions. We also know 
from Fermat's theorem that xP- 1 - 1 = 0 (mod p) has precisely p- 1 incongruent 
solutions; namely, the integers 1, 2, ... , p - 1. 

Now any solution x =a (mod p) of xP-1 - 1 = 0 (mod p) that is not a solution 
of f(x) = 0 (mod p) must satisfy xd- 1 = 0 (mod p). For 

0 = aP-1 - 1 =(ad - 1)f(a) (mod p) 

with p l f(a), implies that pI ad -Lit follows that xd- 1 = 0 (mod p) must have 
at least 

p - 1 - (p - 1 - d) = d 

solutions. This last congruence can possess no more than d solutions (Lagrange's 
theorem enters again) and, hence, has exactly d solutions. 



154 ELEMENTARY NUMBER THEORY 

We take immediate advantage of this corollary to prove Wilson's theorem in a 
different way: Given a prime p, define the polynomial f(x) by 

f(x) = (x -1)(x- 2)· · ·(x- (p -1))- (xP- 1 -1) 

= ap-2xP-2 + ap-3xP-3 + · · · + a1x + ao 

which is of degree p - 2. Fermat's theorem implies that the p - 1 integers 
1, 2, ... , p - 1 are incongruent solutions of the congruence 

f(x) = 0 (mod p) 

But this contradicts Lagrange's theorem, unless 

ap-2 = ap-3 = · · · = a1 = ao = 0 (mod p) 

It follows that, for any choice of the integer x, 

(x- 1)(x- 2) · · · (x- (p- 1))- (xP- 1 - 1) = 0 (mod p) 

Now substitute x = 0 to obtain 

(-1)(-2) · · · (-(p- 1)) + 1 = 0 (mod p) 

or ( -l)P-1(p- 1)! + 1 = 0 (mod p). Either p- 1 is even or p = 2, in which case 
-1 = 1 (mod p ); at any rate, we get 

(p- 1)! = -1 (mod p) 

Lagrange's theorem has provided us with the entering wedge. We are now in a 
position to prove that, for any prime p, there exist integers with order corresponding 
to each divisor of p - 1. We state this more precisely in Theorem 8.6. 

Theorem 8.6. If p is a prime number and dIp- 1, then there are exactly ¢(d) 
incongruent integers having order d modulo p. 

Proof. Let dIp- 1 and 1/f(d) denote the number of integers k, 1 ::S k ::S p- 1, that 
have order d modulo p. Because each integer between 1 and p- 1 has order d for 
somed I p -1, 

p - 1 = .L 1/f(d) 
dlp-1 

At the same time, Gauss' theorem tells us that 

p -1 = .L ¢(d) 
dlp-1 

and therefore, putting these together, 

.L 1/l(d) = .L ¢(d) (1) 
dlp-1 dlp-1 

Our aim is to show that 1/f(d) ::S ¢(d) for each divisor d of p - 1, because this, in 
conjunction with Eq. (1), would produce the equality 1/f(d) = ¢(d) i= 0 (otherwise, 
the first sum would be strictly smaller than the second). 

Given an arbitrary divisor d of p - 1, there are two possibilities: We either 
have 1/f(d) = 0 or 1/f(d) > 0. If 1/f(d) = 0, then certainly 1/f(d) ::S ¢(d). Suppose that 
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1/J(d) > 0, so that there exists an integer a of order d. Then the d integers a, a2, ... , ad 
are incongruent modulo p and each of them satisfies the polynomial congruence 

xd- 1 = 0 (mod p) (2) 

for, (ak)d = (adi = 1 (mod p). By the corollary to Lagrange's theorem, there can be 
no other solutions of Eq. (2).1t follows that any integer having order d modulo p must 
be congruent to one of a, a 2 , ..• , ad. But only ¢(d) of the just-mentioned powers have 
order d, namely those ak for which the exponent k has the property gcd(k, d)= 1. 
Hence, in the present situation, 1/J(d) = ¢(d), and the number of integers having order 
d modulo p is equal to ¢(d). This establishes the result we set out to prove. 

Taking d = p - 1 in Theorem 8.6, we arrive at the following corollary. 

Corollary. If p is a prime, then there are exactly cp(p - 1) incongruent primitive roots 
of p. 

An illustration is afforded by the prime p = 13. For this modulus, 1 has order 
1; 12 has order 2; 3 and 9 have order 3; 5 and 8 have order 4; 4 and 10 have order 6; 
and four integers, namely 2, 6, 7, 11, have order 12. Thus, 

I: lfr(d) = lfr(1) + lfr(2) + lfr(3) + lfr(4) + lfr(6) + lfr(12) 
dll2 

= 1 + 1 + 2 + 2 + 2 + 4 = 12 

as it should. Also notice that 

lfr(1) = 1 = </>(1) 

lfr(2) = 1 = </>(2) 

lfr(3) = 2 = </>(3) 

lfr(4) = 2 = </>(4) 

lfr(6) = 2 = </>(6) 

lfr(12) = 4 = </>(12) 

Incidentally, there is a shorter and more elegant way of proving that lfr(d) = 
</>(d) for each dIp- 1. We simply subject the formula d = Lcld lfr(c) to Mobius 
inversion to deduce that 

d 
l/f(d) = L t.t(c)-

cld C 

In light of Theorem 7. 8, the right-hand side of the foregoing equation is equal to </>(d). 
Of course, the validity of this argument rests upon using the corollary to Theorem 
8.5 to show that d = Lc 1 d lfr(c). 

We can use this last theorem to give another proof of the fact that if p is a 
prime of the form 4k + 1, then the quadratic congruence x 2 = -1 (mod p) admits 
a solution. Because 4 I p - 1, Theorem 8.6 tells us that there is an integer a having 
order 4 modulo p; in other words, 

a 4 = 1 (modp) 

or equivalently, 

(a 2 - 1)(a2 + 1) = 0 (mod p) 
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Because p is a prime, it follows that either 

a 2 -1=0(modp) or a 2 +1=0(modp) 

If the first congruence held, then a would have order less than or equal to 2, a 
contradiction. Hence, a 2 + 1 = 0 (mod p ), making the integer a a solution to the 
congruence x2 = -1 (mod p ). 

Theorem 8.6, as proved, has an obvious drawback; although it does indeed imply 
the existence of primitive roots for a given prime p, the proof is nonconstructive. 
To find a primitive root, we usually must either proceed by brute force or fall back 
on the extensive tables that have been constructed. The accompanying table lists the 
smallest positive primitive root for each prime below 200. 

Least positive Least positive 
Prime primitive root Prime primitive root 

2 89 3 
3 2 97 5 
5 2 101 2 
7 3 103 5 

11 2 107 2 
13 2 109 6 
17 3 113 3 
19 2 127 3 
23 5 131 2 
29 2 137 3 
31 3 139 2 
37 2 149 2 
41 6 151 6 
43 3 157 5 
47 5 163 2 
53 2 167 5 
59 2 173 2 
61 2 179 2 
67 2 181 2 
71 7 191 19 
73 5 193 5 
79 3 197 2 
83 2 199 3 

If x(p) designates the smallest positive primitive root of the prime p, then 
the table presented shows that x(p)::::: 19 for all p < 200. In fact, x(p) becomes 
arbitrarily large as p increases without bound. The table suggests, although the 
answer is not yet known, that there exist an infinite number of primes p for which 
x(p) = 2. 

In most cases x (p) is quite small. Among the first 19862 odd primes up to 
223051, x(p)::::: 6 holds for about 80% of these primes; x(p) = 2 takes place for 
7429 primes or approximately 37% ofthe time, whereas x(p) = 3 happens for4515 
primes, or 23% of the time. 
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In his Disquisitiones Arithmeticae, Gauss conjectured that there are infinitely 
many primes having 10 as a primitive root. In 1927, Emil Artin generalized this 
unresolved question as follows: For a not equal to 1, -1, or a perfect square, do 
there exist infinitely many primes having a as a primitive root? Although there is 
little doubt that this latter conjecture is true, it has yet to be proved. Recent work has 
shown that there are infinitely many a's for which Artin's conjecture is true, and at 
most two primes for which it fails. 

The restrictions in Artin's conjecture are justified as follows. Let a be a perfect 
square, say a = x 2 , and let p be an odd prime with gcd(a , p) = 1. If p )' x, then 
Fermat's theorem yields xP- 1 = 1 (mod p), whence 

a<p-1)/2 = (x2)(p-1)/2 = 1 (mod p) 

Thus, a cannot serve as a primitive root of p [if pIx, then pI a and surely aP-1 ¢. 
1 (mod p)]. Furthermore, because ( -1)2 = 1, -1 is not a primitive root of p when­
ever p- 1 > 2. 

Example 8.3. Let us employ the various techniques of this section to find the ¢( 6) = 2 
integers having order 6 modulo 31. To start, we know that there are 

¢(¢(31)) = ¢(30) = 8 

primitive roots of 31. Obtaining one of them is a matter of trial and error. Because 25 = 
1 (mod 31), the integer 2 is clearly ruled out. We need not search too far, because 3 
turns out to be a primitive root of 31. Observe that in computing the integral powers of 
3 it is not necessary to go beyond 315 ; for the order of 3 must divide ¢(31) = 30 and 
the calculation 

315 = (27)5 = ( -4)5 = ( -64)(16) = -2(16) = -1 =f= 1 (mod 31) 

shows that its order is greater than 15. 
Because 3 is a primitive root of 31, any integer that is relatively prime to 31 is 

congruent modulo 31 to an integer of the form 3k, where 1 ::::: k ::::: 30. Theorem 8.3 
asserts that the order of 3k is 30/gcd(k , 30); this will equal6 if and only if gcd(k , 30) = 
5. The values of k for which the last equality holds are k = 5 and k = 25. Thus our 
problem is now reduced to evaluating 35 and 325 modulo 31. A simple calculation gives 

35 = (27)9 = (-4)9 = -36 = 26 (mod 31) 

325 = (35) 5 = (26)5 = ( -5)5 = ( -125)(25) = -1(25) = 6 (mod 31) 

so that 6 and 26 are the only integers having order 6 modulo 31. 

PROBLEMS 8.2 

1. If p is an odd prime, prove the following: 
(a) The only incongruent solutions of x2 = 1 (mod p) are 1 and p- 1. 
(b) The congruence xP-2 + · · · + x 2 + x + 1 = 0 (mod p) has exactly p - 2 incongru­

ent solutions, and they are the integers 2, 3, ... , p - 1. 
2. Verify that each of the congruences x 2 = 1 (mod 15), x2 = -1 (mod 65), and x 2 = 

-2 (mod 33) has four incongruent solutions; hence, Lagrange's theorem need not hold 
if the modulus is a composite number. 
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3. Determine all the primitive roots of the primes p = 11, 19, and 23, expressing each as a 
power of some one of the roots. 

4. Given that 3 is a primitive root of 43, find the following: 
(a) All positive integers less than 43 having order 6 modulo 43. 
(b) All positive integers less than 43 having order 21 modulo 43. 

5. Find all positive integers less than 61 having order 4 modulo 61. 
6. Assuming that r is a primitive root of the odd prime p, establish the following facts: 

(a) The congruence r<P-1)12 = -1 (mod p) holds. 
(b) If r' is any other primitive root of p, then rr' is not a primitive root of p. 

[Hint: By part (a), (rr')<P- 1)12 = 1 (mod p).] 
(c) If the integer r' is such that rr' = 1 (mod p ), then r' is a primitive root of p. 

7. For a prime p > 3, prove that the primitive roots of p occur in incongruent pairs r, r' 
where rr' = 1 (mod p). 
[Hint: If r is a primitive root of p, consider the integer r' = rP-2 .] 

8. Let r be a primitive root of the odd prime p. Prove the following: 
(a) If p = 1 (mod 4), then -r is also a primitive root of p. 
(b) If p = 3 (mod 4), then -r has order (p- 1)/2 modulo p. 

9. Give a different proof of Theorem 5.5 by showing that if r is a primitive root of the prime 
p = 1 (mod 4), then r<P-1)/4 satisfies the quadratic congruence x 2 + 1 = 0 (mod p). 

10. Use the fact that each prime p has a primitive root to give a different proof of Wilson's 
theorem. 
[Hint: If p has aprimitiverootr, then Theorem 8.4 implies that(p- 1)! = r1+2+··+(p-1) 

(mod p).] 
11. If p is a prime, show that the product of the ¢(p - 1) primitive roots of pis congruent 

modulo p to ( -1 )<I><P- 1). 

[Hint: If r is a primitive root of p, then the integer rk is a primitive root of p provided 
that gcd(k, p- 1) = 1; now use Theorem 7.7.] 

12. For an odd prime p, verify that the sum 

1 n + 2n + 3n + ... + (p - l)n = { 0 (mod p) 
-1 (mod p) 

if(p-l)fn 
if(p -1) In 

[Hint: If (p - 1) f n, and r is a primitive root of p, then the indicated sum is congruent 
modulo p to 

r<p-1)n- 1 
1 + rn + r2n + ... + r(p-2)n = .] 

rn- 1 

8.3 COMPOSITE NUMBERS HAVING PRIMITIVE ROOTS 

We saw earlier that 2 is a primitive root of 9, so that composite numbers can also 
possess primitive roots. The next step in our program is to determine all composite 
numbers for which there exist primitive roots. Some information is available in the 
following two negative results. 

Theorem 8.7. Fork~ 3, the integer 2k has no primitive roots. 

Proof. For reasons that will become clear later, we start by showing that if a is an odd 
integer, then for k ~ 3 
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If k = 3, this congruence becomes a2 = 1 (mod 8), which is certainly true (indeed, 
12 = 32 = 52 = 72 = 1 (mod 8)). Fork > 3, we proceed by induction on k. Assume 
that the asserted congruence holds for the integer k; that is, a 2k-z = 1 (mod 2k). This 
is equivalent to the equation 

a2k-z = 1 + b2k 

where b is an integer. Squaring both sides, we obtain 

a2k-I = (a2k-z)2 = 1 + 2(b2k) + (b2k)2 

= 1 + 2k+1(b + b22k-l) 

= 1 (mod 2k+I) 

so that the asserted congruence holds fork+ 1 and, hence, for all k :=::: 3. 
Now the integers that are relatively prime to 2k are precisely the odd integers, so 

that ¢(2k) = 2k-I. By what was just proved, if a is an odd integer and k :=::: 3, 

a4><2k)/2 = 1 (mod 2k) 

and, consequently, there are no primitive roots of 2k. 

Another theorem in this same spirit is Theorem 8.8. 

Theorem 8.8. If gcd(m, n) = 1, where m > 2 and n > 2, then the integer mn has no 
primitive roots. 

Proof. Consider any integer a for which gcd(a, mn) = 1; then gcd(a, m) = 1 and 
gcd(a, n) = 1. Put h = lcm(¢(m), c/>(n)) and d = gcd(¢(m), c/>(n)). 

Because ¢(m) and ¢(n) are both even (Theorem 7.4), surely d :=::: 2. In conse­
quence, 

h = c/>(m)c/>(n) < c/>(mn) 
d - 2 

Now Euler's theorem asserts that atf><m) = 1 (mod m). Raising this congruence to the 
c/>(n)/d power, we get 

ah = (atf>(m))t/J(n)fd = 11/>(n)fd = 1 (mod m) 

Similar reasoning leads to ah = 1 (mod n ). Together with the hypothesis gcd(m , n) = 
1, these congruences force the conclusion that 

ah = 1 (mod mn) 

The point we wish to make is that the order of any integer relatively prime to mn does 
not exceed c/>(mn)/2, whence there can be no primitive roots for mn. 

Some special cases of Theorem 8.8 are of particular interest, and we list these 
below. 

Corollary. The integer n fails to have a primitive root if either 

(a) n is divisible by two odd primes, or 
(b) n is of the form n = 2m pk, where p is an odd prime and m :=::: 2. 
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The significant feature of this last series of results is that it restricts our search 
for primitive roots to the integers 2, 4, pk, and 2pk, where pis an odd prime. In this 
section, we prove that each of the numbers just mentioned has a primitive root, the 
major task being the establishment of the existence of primitive roots for powers of 
an odd prime. The argument is somewhat long-winded, but otherwise routine; for 
the sake of clarity, it is broken down into several steps. 

Lemma 1. If p is an odd prime, then there exists a primitive root r of p such that 
rP-1 =J= 1 (mod p 2). 

Proof. From Theorem 8.6, it is known that p has primitive roots. Choose any one, 
call it r. If rP-1 =J= 1 (mod p 2), then we are finished. In the contrary case, replacer by 
r' = r + p, which is also a primitive root of p. Then employing the binomial theorem, 

(r')P-1 = (r + p)P-1 = rP-1 + (p- 1)prP-2 (mod p 2) 

But we have assumed that rP- 1 = 1 (mod p 2); hence, 

(r')P-1 = 1 - prP-2 (mod p 2) 

Becauser is a primitive root of p, gcd(r, p) = 1, and therefore p J rP- 2 • The outcome 
of all this is that (r')P-1 =J= 1 (mod p 2), which proves the lemma. 

Corollary. If p is an odd prime, then p 2 has a primitive root; in fact, for a primitive 
root r of p, either r orr + p (or both) is a primitive root of p 2 • 

Proof. The assertion is almost obvious: If r is a primitive root of p, then the order of 
r modulo p 2 is either p- 1 or p(p- 1) = ¢(p2 ). The foregoing proof shows that if 
r has order p - 1 modulo p 2, then r + p is a primitive root of p 2• 

As an illustration of this corollary, we observe that 3 is a primitive root of 7; 
and that both 3 and 10 are primitive roots of 72. Also, 14 is a primitive root of 29, 
but not of 292. 

To reach our goal, another somewhat technical lemma is needed. 

Lemma 2. Let p be an odd prime and let r be a primitive root of p with the property 
that rP- 1 =J= 1 (mod p 2 ). Then for each positive integer k :::=: 2, 

rP•-z(p-1) =J= 1 (mod pk) 

Proof. The proof proceeds by induction on k. By hypothesis, the assertion holds for 
k = 2. Let us assume that it is true for some k :::=: 2 and show that it is true for k + 1. 
Because gcd(r, pk-1) = gcd(r, pk) = 1, Euler's theorem indicates that 

rp>-z(p-1) = r<P<P•-') = 1 (mod pk-1) 

Hence, there exists an integer a satisfying 

rp'-z(p-1) = 1 + apk-1 
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where p l a by our induction hypothesis. Raise both sides of this last equation to the 
pth power and expand to obtain 

rP>-t(p- 1) = (1 + apk-1)P = 1 + apk (mod pk+1) 

Because the integer a is not divisible by p, we have 

rp>-t(p-1) =f= 1 (mod pk+l) 

This completes the induction step, thereby proving the lemma. 

The hard work, for the moment, is over. We now stitch the pieces together to 
prove that the powers of any odd prime have a primitive root. 

Theorem 8.9. If p is an odd prime number and k ::=: 1, then there exists a primitive 
root for pk. 

Proof. The two lemmas allow us to choose a primitive root r of p for which rP•-z(p- 1) =f= 
1 (mod pk); in fact, any integer r satisfying the condition rP- 1 =/= 1 (mod p 2) will do. 
We argue that such an r serves as a primitive root for all powers of p. 

Let n be the order of r modulo pk. In compliance with Theorem 8.1, n must 
divide ¢(pk) = pk- 1(p- 1). Because rn = 1 (mod pk) yields rn = 1 (mod p), we 
also have p- 11 n (Theorem 8.1 serves again). Consequently, n assumes the form 
n = pm(p- 1), where 0.:::; m .:::; k- 1. If it happened that n i= pk-1(p - 1), then 
pk-2(p- 1) would be divisible by nand we would arrive at 

rp'-'{p- 1) = 1 (mod pk) 

contradicting the way in which r was initially chosen. Therefore, n = pk- 1(p- 1) and 
r is a primitive root for pk. 

This leaves only the case 2pk for our consideration. 

Corollary. There are primitive roots for 2pk, where p is an odd prime and k ::=: 1. 

Proof. Let r be a primitive root for pk. There is no harm in assuming that r is an odd 
integer; for, if it is even, then r + pk is odd and is still a primitive root for pk. Then 
gcd(r , 2pk) = 1. The order n of r modulo 2pk must divide 

¢(2pk) = ¢(2)¢(pk) = r/J(pk) 

But rn = 1 (mod 2pk) implies that rn = 1 (mod pk), and therefore rjJ(pk) In. Together 
these divisibility conditions force n = ¢(2pk), making r a primitive root of 2pk. 

The prime 5 has ¢(4) = 2 primitive roots, namely, the integers 2 and 3. Because 

25- 1 = 16 ¢. 1 (mod 25) and 35- 1 = 6 ¢. 1 (mod 25) 

these also serve as primitive roots for 52 and, hence, for all higher powers of 5. The 
proof of the last corollary guarantees that 3 is a primitive root for all numbers of the 
form 2 · 5k. 

In Theorem 8.10 we summarize what has been accomplished. 



Theorem 8.10. An integer n > 1 has a primitive root if and only if 

n = 2, 4, pk, or 2pk 

where p is an odd prime. 

Proof. By virtue of Theorems 8.7 and 8.8, the only positive integers with primitive 
roots are those mentioned in the statement of our theorem. It may be checked that 1 is 
a primitive root for 2, and 3 is a primitive root of 4. We have just finished proving that 
primitive roots exist for any power of an odd prime and for twice such a power. 

This seems the opportune moment to mention that Euler gave an essentially 
correct (although incomplete) proof in 1773 of the existence of primitive roots for 
any prime p and listed all the primitive roots for p _:s 37. Legendre, using Lagrange's 
theorem, managed to repair the deficiency and showed (1785) that there are ¢(d) 
integers of order d for each d I (p - 1). The greatest advances in this direction were 
made by Gauss when, in 1801, he published a proof that there exist primitive roots 
of n if and only if n = 2, 4, pk, and 2pk, where pis an odd prime. 

PROBLEMS 8.3 

1. (a) Find the four primitive roots of 26 and the eight primitive roots of 25. 
(b) Determine all the primitive roots of 32 , 33 , and 34 . 

2. For an odd prime p, establish the following facts: 
(a) There are as many primitive roots of 2pn as of pn. 
(b) Any primitive root r of pn is also a primitive root of p. 

[Hint: Let r have order k modulo p. Show that rPk = 1 (mod p 2 ), ••. , rP"-1k = 
1 (mod pn) and, hence, rjJ(pn) I pn-lk.] 

(c) A primitive root of p2 is also a primitive root of pn for n ~ 2. 
3. If r is a primitive root of p 2 , p being an odd prime, show that the solutions of the 

congruence xp-l = 1 (mod p2 ) are precisely the integers rP, r 2P, ... , r<p-l)p_ 
4. (a) Prove that 3 is a primitive root of all integers of the form 7k and 2 · 7k. 

(b) Find a primitive root for any integer of the form 17k. 
5. Obtain all the primitive roots of 41 and 82. 
6. (a) Prove that a primitive root r of pk, where p is an odd prime, is a primitive root of 

2pk if and only if r is an odd integer. 
(b) Confirm that 3, 33 , 35 , and 39 are primitive roots of 578 = 2 · 172 , but that 34 and 

317 are not. 
7. Assume that r is a primitive root of the odd prime p and (r + tp)P-1 =f= 1 (mod p2). 

Show that r + tp is a primitive root of pk for each k ~ 1. 
8. If n = 2ko p~1 p~2 • • • p~' is the prime factorization of n > 1, define the universal exponent 

A.(n) of n by 

A.(n) = lcm(A.(2k0 ), ¢(p~1 ), ••• , ¢(p~')) 

where A.(2) = 1, A.(22) = 2, and A.(2k) = 2k-2 fork ~ 3. Prove the following statements 
concerning the universal exponent: 
(a) For n = 2, 4, pk, 2pk, where pis an odd prime, A.(n) = ¢(n). 
(b) If gcd(a, 2k) = 1, then aA.<2•l = 1 (mod 2k). 

[Hint: Fork ~ 3, use induction on k and the fact that A.(2k+l) = 2A.(2k).] 
(c) If gcd(a, n) = 1, then aA.(n) = 1 (mod n). 

[Hint: For each prime power pk occurring inn, aA.(n) = 1 (mod pk).] 



PRIMITIVE ROOTS AND INDICES 163 

9. Verify that, for 5040 = 24 · 32 · 5 · 7, A.(5040) = 12 and ¢(5040) = 1152. 
10. Use Problem 8 to show that if n =f. 2, 4, pk, 2pk, where pis an odd prime, then n has no 

primitive root. 
[Hint: Except for the cases 2, 4, pk, 2pk, we have A.(n) I !¢(n); hence, gcd(a, n) = 1 
implies that atP<n)/2 = 1 (mod n ).] 

11. (a) Prove that if gcd(a, n) = 1, then the linear congruence ax = b (mod n) has the 
solution x = bat..(n)-1 (mod n). 

(b) Use part (a) to solve the congruences 13x = 2 (mod 40) and 3x = 13 (mod 77). 

8.4 THE THEORY OF INDICES 

The remainder of the chapter is concerned with a new idea, the concept of index. 
This was introduced by Gauss in his Disquisitiones Arithmeticae. 

Let n be any integer that admits a primitive root r. As we know, the first ¢(n) 
powers ofr, 

are congruent modulo n, in some order, to those integers less than n and relatively 
prime to it. Hence, if a is an arbitrary integer relatively prime ton, then a can be 
expressed in the form 

a= rk (modn) 

for a suitable choice of k, where 1 ~ k ~ ¢(n ). This allows us to frame the following 
definition. 

Definition 8.3. Let r be a primitive root of n. If gcd(a, n) = 1, then the smallest 
positive integer k such that a = rk (mod n) is called the index of a relative to r. 

Customarily, we denote the index of a relative to r by indr a or, if no confusion 
is likely to occur, by ind a. Clearly, 1 ~ indr a ~ ¢(n) and 

rind, a= a (mod n) 

The notation indr a is meaningless unless gcd(a , n) = 1; in the future, this will be 
tacitly assumed. 

For example, the integer 2 is a primitive root of 5 and 

21 = 2 22 = 4 23 = 3 24 = 1 (mod 5) 

It follows that 

indz 1 = 4 indz 2 = 1 ind2 3 = 3 ind2 4 = 2 

Observe that indices of integers that are congruent modulo n are equal. Thus, 
when setting up tables of values for ind a, it suffices to consider only those integers 
a less than and relatively prime to the modulus n. To see this, let a = b (mod n), 
where a and bare taken to be relatively prime ton. Because rinda =a (mod n) and 
rindb = b (mod n), we have 

rinda = rindb (mod n) 
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Invoking Theorem 8.2, it may be concluded that ind a = ind b (mod cp(n)). But, 
because of the restrictions on the size of ind a and ind b, this is only possible when 
ind a= ind b. 

Indices obey rules that are reminiscent of those for logarithms, with the primitive 
root playing a role analogous to that of the base for the logarithm. 

Theorem 8.11. If n has a primitive root r and ind a denotes the index of a relative to 
r, then the following properties hold: 

(a) ind (ab) = ind a+ ind b (mod ¢(n)). 
(b) ind ak =kind a (mod ¢(n)) fork> 0. 
(c) ind 1 = 0 (mod ¢(n)), ind r = 1 (mod ¢(n)). 

Proof. By the definition of index, rinda =a (mod n) and rindb = b (mod n). Multi­
plying these congruences together, we obtain 

rinda+indb = ab (mod n) 

But rind(ab) = ab (mod n), so that 

rinda+indb = rind(ab) (mod n) 

It may very well happen that ind a + ind b exceeds ¢(n ). This presents no problem, 
for Theorem 8.2 guarantees that the last equation holds if and only if the exponents are 
congruent modulo ¢(n ); that is, 

ind a+ ind b = ind (ab) (mod ¢(n)) 

which is property (a). 
The proof of property (b) proceeds along much the same lines. For we have 

rincta• = ak (mod n), and by the laws of exponents, rkinda = (rindai = ak (mod n); 
hence, 

rinda• = rkinda (mod n) 

As above, the implication is that ind ak = kind a (mod ¢(n )). The two parts of property 
(c) should be fairly apparent. 

The theory of indices can be used to solve certain types of congruences. For 
instance, consider the binomial congruence 

xk =a (mod n) k :=:: 2 

where n is a positive integer having a primitive root and gcd(a, n) = 1. By 
properties (a) and (b) of Theorem 8.11, this congruence is entirely equivalent to 
the linear congruence 

kind x = ind a (mod ¢(n)) 

in the unknown ind x. If d = gcd(k, ¢(n)) and d 1 ind a, there is no solution. 
But, if d I ind a, then there are exactly d values of ind x that will satisfy this last 
congruence; hence, there are d incongruent solutions of xk = a (mod n ). 

The case in which k = 2 and n = p, with pan odd prime, is particularly im­
portant. Because gcd(2 , p - 1) = 2, the foregoing remarks imply that the quadratic 
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congruence x 2 =a (mod p) has a solution if and only if 21 ind a; when this con­
dition is fulfilled, there are exactly two solutions. If r is a primitive root of p, then 
rk(1 ::::: k::::: p- 1) runs modulo p through the integers 1, 2, ... , p- 1, in some or­
der. The even powers of r produce the values of a for which the congruence x 2 = 
a (mod p) is solvable; there are precisely (p- 1)/2 such choices for a. 

Example 8.4. For an illustration of these ideas, let us solve the congruence 

4x9 = 7 (mod 13) 

A table of indices can be constructed once a primitive root of 13 is fixed. Using the 
primitive root 2, we simply calculate the powers 2, 22, ... , 212 modulo 13. Here, 

21 = 2 25 = 6 29 = 5 

22 = 4 26 = 12 210 = 10 

23 = 8 27 = 11 211 = 7 

24 = 3 28 = 9 212 = 1 

all congruences being modulo 13; hence, our table is 

a 2 3 4 5 6 7 8 9 10 11 12 

indz a 12 4 2 9 5 11 3 8 10 7 6 

Taking indices, the congruence 4x9 = 7 (mod 13) has a solution if and only if 

ind2 4 + 9 ind2 x = ind2 7 (mod 12) 

The table gives the values ind2 4 = 2 and ind2 7 = 11, so that the last congruence be­
comes 9 ind2 x = 11 - 2 = 9 (mod 12) which, in turn, is equivalentto having ind2 x = 
1 (mod 4). It follows that 

ind2 x = 1, 5, or 9 

Consulting the table of indices once again, we find that the original congruence 
4x9 = 7 (mod 13) possesses the three solutions 

x = 2, 5, and 6 (mod 13) 

If a different primitive root is chosen, we obviously obtain a different value for the 
index of a; but, for purposes of solving the given congruence, it does not really matter 
which index table is available. The ¢(¢(13)) = 4 primitive roots of 13 are obtained 
from the powers 2k(1 ::::: k ::::: 12), where 

gcd(k, ¢(13)) = gcd(k, 12) = 1 

These are 

21 =2 27 = 11 211 = 7 (mod 13) 

The index table for, say, the primitive root 6 is displayed below: 

a 2 3 4 5 6 7 8 9 10 11 12 

12 5 8 10 9 7 3 4 2 11 6 
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Employing this table, the congruence 4x9 = 7 (mod 13) is replaced by 

ind6 4 + 9 ind6 x = ind6 7 (mod 12) 

or, rather, 

9 ind6 x = 7- 10 = -3 = 9 (mod 12) 

Thus, ind6 x = 1, 5, or 9, leading to the solutions 

x = 2, 5, and 6 (mod 13) 

as before. 

The following criterion for solvability is often useful. 

Theorem 8.12. Let n be an integer possessing a primitive root and let gcd(a , n) = 1. 
Then the congruence xk = a (mod n) has a solution if and only if 

a<P<n)fd = 1 (mod n) 

where d = gcd(k, if>(n)); if it has a solution, there are exactly d solutions modulo n. 

Proof. Taking indices, the congruence a<P<n)/d = 1 (mod n) is equivalent to 

if>(n). d md a= 0 (mod if>(n)) 

which, in tum, holds if and only if d I ind a. But we have just seen that the latter is a 
necessary and sufficient condition for the congruence xk = a (mod n) to be solvable. 

Corollary. Let p be a prime and gcd(a , p) = 1. Then the congruence xk = a (mod p) 
has a solution if and only if a<p-l)fd = 1 (mod p ), where d = gcd(k , p - 1 ). 

Example 8.5. Let us consider the congruence 

x 3 = 4 (mod 13) 

In this setting, d = gcd(3, ¢(13)) = gcd(3, 12) = 3, and therefore ¢(13)/d = 4. Be­
cause 44 = 9 =/= 1 (mod 13), Theorem 8.12 asserts that the given congruence is not 
solvable. 

On the other hand, the same theorem guarantees that 

x 3 = 5 (mod 13) 

possesses a solution (in fact, there are three incongruent solutions modulo 13); for, in 
this case, 54 = 625 = 1 (mod 13). These solutions can be found by means ofthe index 
calculus as follows: The congruence x 3 = 5 (mod 13) is equivalent to 

3 ind2 x = 9 (mod 12) 

which becomes 

ind2 x = 3 (mod 4) 

This last congruence admits three incongruent solutions modulo 12, namely, 

ind2 x = 3, 7, or 11 
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The integers corresponding to these indices are, respectively, 8, 11, and 7, so that the 
solutions of the congruence x 3 = 5 (mod 13) are 

x = 7, 8, and 11 (mod 13) 

PROBLEMS 8.4 

1. Find the index of 5 relative to each of the primitive roots of 13. 
2. Using a table of indices for a primitive root of 11, solve the following congruences: 

(a) 7x3 = 3 (mod 11). 
(b) 3x4 = 5 (mod 11). 
(c) x 8 = 10 (mod 11). 

3. The following is a table of indices for the prime 17 relative to the primitive root 3: 

a 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ind3 a 16 14 12 5 15 11 10 2 3 7 13 4 9 6 8 

With the aid of this table, solve the following congruences: 
(a) x 12 = 13 (mod 17). 
(b) 8x5 = 10 (mod 17). 
(c) 9x8 = 8 (mod 17). 
(d) 7x = 7 (mod 17). 

4. Find the remainder when 324 · 513 is divided by 17. 
[Hint: Use the theory of indices.] 

5. If r and r' are both primitive roots of the odd prime p, show that for gcd(a , p) = 1 

ind,, a = (ind, a)(ind,, r) (mod p- 1) 

This corresponds to the rule for changing the base of logarithms. 
6. (a) Construct a table of indices for the prime 17 with respect to the primitive root 5. 

[Hint: By the previous problem, ind5 a = 13 ind3 a (mod 16).] 
(b) Solve the congruences in Problem 3, using the table in part (a). 

7. If r is a primitive root of the odd prime p, verify that 

1 
ind, (-1) = ind, (p- 1) = 2.(p- 1) 

8. (a) Determine the integers a(l ::; a ::; 12) such that the congruence ax4 = b (mod 13) 
has a solution forb = 2, 5, and 6. 

(b) Determine the integers a(1 ::; a ::; p- 1) such that the congruence x4 =a (mod p) 
has a solution for p = 7, 11, and 13. 

9. Employ the corollary to Theorem 8.12 to establish that if pis an odd prime, then 
(a) x 2 = -1 (mod p) is solvable if and only if p = 1 (mod 4). 
(b) x4 = -1 (mod p) is solvable if and only if p = 1 (mod 8). 

10. Given the congruence x 3 = a (mod p ), where p :::: 5 is a prime and gcd(a , p) = 1, prove 
the following: 
(a) If p = 1 (mod 6), then the congruence has either no solutions or three incongruent 

solutions modulo p. 
(b) If p = 5 (mod 6), then the congruence has a unique solution modulo p. 

11. Show that the congruence x 3 = 3 (mod 19) has no solutions, whereas x 3 = 11 (mod 19) 
has three incongruent solutions. 
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12. Determine whether the two congruences x 5 = 13 (mod 23) and x7 = 15 (mod 29) are 
solvable. 

13. If pis a prime and gcd(k, p- 1) = 1, prove that the integers 

1k,2k,3k, ... ,(p-1)k 

form a reduced set of residues modulo p. 
14. Letr be a primitiverootoftheodd prime p, and letd = gcd(k, p- 1). Prove thatthe val­

ues of a for which the congruence xk = a (mod p) is solvable are rd, r2d, ... , rl<p-l)fd]d. 

15. If r is a primitive root of the odd prime p, show that 

. . (p- 1) 
md, (p -a) = md, a+ --2- (mod p - 1) 

and, consequently, that only half of an index table need be calculated to complete the 
table. 

16. (a) Let r be a primitive root of the odd prime p. Establish that the exponential congruence 

ax= b (mod p) 

has a solution if and only if d I ind, b, where the integer d = gcd(ind, a, p - 1); in 
this case, there are d incongruent solutions modulo p - 1. 

(b) Solve the exponential congruences 4x = 13 (mod 17) andY = 4 (mod 19). 
17. For which values of b is the exponential congruence 9x = b (mod 13) solvable? 
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