
CHAPTER 

3 
PRIMES AND THEIR DISTRIBUTION 

Mighty are numbers, joined with art resistless. 
EURIPIDES 

3.1 THE FUNDAMENTAL THEOREM OF ARITHMETIC 

Essential to everything discussed herein-in fact, essential to every aspect of number 
theory-is the notion of a prime number. We have previously observed that any 
integer a > 1 is divisible by ± 1 and ± a; if these exhaust the divisors of a, then it 
is said to be a prime number. In Definition 3.1 we state this somewhat differently. 

Definition 3.1. An integer p > 1 is called a prime number, or simply a prime, if its 
only positive divisors are 1 and p. An integer greater than 1 that is not a prime is termed 
composite. 

Among the first ten positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10 are 
composite numbers. Note that the integer 2 is the only even prime, and according to 
our definition the integer 1 plays a special role, being neither prime nor composite. 

In the rest of this book, the letters p and q will be reserved, so far as is possible, 
for primes. 

Proposition 14 of Book IX of Euclid's Elements embodies the result that later 
became known as the Fundamental Theorem of Arithmetic, namely, that every inte­
ger greater than 1 can, except for the order of the factors, be represented as a product 
of primes in one and only one way. To quote the proposition itself: "If a number be 
the least that is measured by prime numbers, it will not be measured by any other 
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prime except those originally measuring it." Because every number a > 1 is either 
a prime or, by the Fundamental Theorem, can be broken down into unique prime 
factors and no further, the primes serve as the building blocks from which all other 
integers can be made. Accordingly, the prime numbers have intrigued mathemati­
cians through the ages, and although a number of remarkable theorems relating to 
their distribution in the sequence of positive integers have been proved, even more 
remarkable is what remains unproved. The open questions can be counted among 
the outstanding unsolved problems in all of mathematics. 

To begin on a simpler note, we observe that the prime 3 divides the integer 36, 
where 36 may be written as any one of the products 

6. 6 = 9. 4 = 12. 3 = 18 . 2 

In each instance, 3 divides at least one of the factors involved in the product. This is 
typical of the general situation, the precise result being Theorem 3.1. 

Theorem 3.1. If pis a prime and pI ab, then p I a or p I b. 

Proof. If pI a, then we need go no further, so let us assume that p l a. Because 
the only positive divisors of p are 1 and p itself, this implies that gcd(p , a) = 1. (In 
general, gcd(p, a)= p or gcd(p, a)= 1 according asp I a or p l a.) Hence, citing 
Euclid's lemma, we get p I b. 

This theorem easily extends to products of more than two terms. 

Corollary 1. If p is a prime and p I a 1 a2 · · · an, then p I ak for some k, where 1 ::::; k ::::; n. 

Proof. We proceed by induction on n, the number of factors. When n = 1, the stated 
conclusion obviously holds; whereas when n = 2, the result is the content of Theorem 
3.1. Suppose, as the induction hypothesis, that n > 2 and that whenever p divides a 
product ofless than n factors, it divides at least one of the factors. Now let p I a 1 a2 · · · an. 
From Theorem 3.1, either pI an or pI a1a2 ···an-I· If pI an, then we are through. As 
regards the case where p I a 1 a2 · · · an-I, the induction hypothesis ensures that p I ak 
for some choice of k, with 1 ::::; k ::::; n - 1. In any event, p divides one of the integers 
aj, a2, ... , an. 

Corollary 2. If p, qJ, q2, ... , qn are all primes and pI q1q2 · · · qn, then p = qk for 
some k, where 1 ::::; k ::::; n. 

Proof. By virtue of Corollary 1, we know that p I qk for some k, with 1 ::::; k ::::; n. Being 
a prime, qk is not divisible by any positive integer other than 1 or qk itself. Because 
p > 1, we are forced to conclude that p = qk. 

With this preparation out of the way, we arrive at one of the cornerstones of 
our development, the Fundamental Theorem of Arithmetic. As indicated earlier, 
this theorem asserts that every integer greater than 1 can be factored into primes 
in essentially one way; the linguistic ambiguity essentially means that 2 · 3 · 2 is 
not considered as being a different factorization of 12 from 2 · 2 · 3. We state this 
precisely in Theorem 3.2. 
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Theorem 3.2 Fundamental Theorem of Arithmetic. Every positive integer n > 1 
can be expressed as a product of primes; this representation is unique, apart from the 
order in which the factors occur. 

Proof. Either n is a prime or it is composite; in the former case, there is nothing 
more to prove. If n is composite, then there exists an integer d satisfying d I n and 
1 < d < n. Among all such integers d, choose PI to be the smallest (this is possible 
by the Well-Ordering Principle). Then PI must be a prime number. Otherwise it too 
would have a divisor q with 1 < q <PI; but then q I PI and PI In imply that q In, 
which contradicts the choice of PI as the smallest positive divisor, not equal to 1, of n. 

Wethereforemaywriten = Pini,wherepiisprimeand1 < ni < n.Ifnihappens 
to be a prime, then we have our representation. In the contrary case, the argument is 
repeated to produce a second prime number p2 such that ni = p 2n2; that is, 

If n2 is a prime, then it is not necessary to go further. Otherwise, write n2 = p3n3, with 
P3 a prime: 

The decreasing sequence 

n > ni > nz > · · · > 1 

cannot continue indefinitely, so that after a finite number of steps nk-I is a prime, call 
it, Pk· This leads to the prime factorization 

n = PIP2 · · · Pk 

To establish the second part of the proof-the uniqueness of the prime factoriza­
tion-let us suppose that the integer n can be represented as a product of primes in two 
ways; say, 

r::::;s 

where the p; and qi are all primes, written in increasing magnitude so that 

PI::::; P2::::; · · ·::::; Pr 

Because PI I qiqz · · · q8 , Corollary 2 of Theorem 3.1 tells us that PI = qk for some k; 
but then PI :::: qi. Similar reasoning gives qi :::: PI, whence PI = qi. We may cancel 
this common factor and obtain 

PzP3 · · · Pr = qzq3 · · · q. 

Now repeat the process to get p 2 = q2 and, in turn, 

P3P4 · · · Pr = q3q4 · · · q. 

Continue in this fashion. If the inequality r < s were to hold, we would eventually 
arrive at 

1 = qr+Iqr+2 · · · qs 

which is absurd, because each qi > 1. Hence, r =sand 

P2 = qz, · · · , Pr = q, 

making the two factorizations of n identical. The proof is now complete. 
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Of course, several of the primes that appear in the factorization of a given positive 
integer may be repeated, as is the case with 360 = 2 · 2 · 2 · 3 · 3 · 5. By collecting 
like primes and replacing them by a single factor, we can rephrase Theorem 3.2 as 
a corollary. 

Corollary. Any positive integer n > 1 can be written uniquely in a canonical form 
k, k2 k, 

n =Pi P2 · · · Pr 

where, for i = 1, 2, ... , r, each k; is a positive integer and each p; is a prime, with 
Pi < P2 < · · · < Pr· 

To illustrate, the canonical form of the integer 360 is 360 = 23 · 32 · 5. As further 
examples we cite 

4725=33 -52 ·7 and 17460=23 -32 -5-72 

Theorem 3.2 should not be taken lightly because number systems do exist in 
which the factorization into "primes" is not unique. Perhaps the most elemental 
example is the set E of all positive even integers. Let us agree to call an even integer 
an e-prime if it is not the product of two other even integers. Thus, 2, 6, 10, 14, ... 
all are e-primes, whereas 4, 8, 12, 16, ... are not. It is not difficult to see that the 
integer 60 can be factored into e-primes in two distinct ways; namely, 

60 = 2 . 30 = 6 . 10 

Part of the difficulty arises from the fact that Theorem 3.1 is lacking in the set E; 
that is, 6 I 2 · 30, but 6 )' 2 and 6 )' 30. 

This is an opportune moment to insert a famous result of Pythagoras. 
Mathematics as a science began with Pythagoras (569-500 B.c.), and much of the 
content of Euclid's Elements is due to Pythagoras and his School. The Pythagoreans 
deserve the credit for being the first to classify numbers into odd and even, prime 
and composite. 

Theorem 3.3 Pythagoras. The number v'2 is irrational. 

Proof. Suppose, to the contrary, that v'2 is a rational number, say, v'2 = ajb, where a 
and bare both integers with gcd(a, b)= 1. Squaring, we get a2 = 2b2 , so that b I a 2 . 

If b > 1, then the Fundamental Theorem of Arithmetic guarantees the existence of a 
prime p such that pI b. It follows that pI a 2 and, by Theorem 3.1, that pI a; hence, 
gcd(a, b) :::: p. We therefore arrive at a contradiction, unless b = 1. But if this happens, 
then a 2 = 2, which is impossible (we assume that the reader is willing to grant that 
no integer can be multiplied by itself to give 2). Our supposition that v'2 is a rational 
number is untenable, and so v'2 must be irrational. 

There is an interesting variation on the proof of Theorem 3.3. If .../2 = ajb with 
gcd(a, b) = 1, there must exist integers rands satisfying ar + bs = 1. As a result, 

..Ji = ..Ji(ar + bs) = (..Jia)r + (..Jib)s = 2br +as 

This representation of .../2 leads us to conclude that .../2 is an integer, an obvious 
impossibility. 
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PROBLEMS 3.1 

1. It has been conjectured that there are infinitely many primes of the form n2 - 2. Exhibit 
five such primes. 

2. Give an example to show that the following conjecture is not true: Every positive integer 
can be written in the form p + a 2 , where pis either a prime or 1, and a :::: 0. 

3. Prove each of the assertions below: 
(a) Any prime of the form 3n + 1 is also of the form 6m + 1. 
(b) Each integer of the form 3n + 2 has a prime factor of this form. 
(c) The only prime of the form n3 - 1 is 7. 

[Hint: Write n3 - 1 as (n - 1)(n2 + n + 1).] 
(d) The only prime p for which 3p + 1 is a perfect square is p = 5. 
(e) The only prime of the form n2 - 4 is 5. 

4. If p :::: 5 is a prime number, show that p 2 + 2 is composite. 
[Hint: p takes one of the forms 6k + 1 or 6k + 5.] 

5. (a) Given that p is a prime and p I an, prove that pn I an. 
(b) If gcd(a, b) = p, a prime, what are the possible values of gcd(a2 , b2), gcd(a2 , b) 

and gcd(a3 , b2)? 
6. Establish each of the following statements: 

(a) Every integer of the form n4 + 4, with n > 1, is composite. 
[Hint: Write n4 + 4 as a product of two quadratic factors.] 

(b) If n > 4 is composite, then n divides (n - 1)!. 
(c) Any integer of the form gn + 1, where n :::: 1, is composite. 

[Hint: 2n + 1 123n + 1.] 
(d) Each integer n > 11 can be written as the sum of two composite numbers. 

[Hint: If n is even, say n = 2k, then n - 6 = 2(k - 3); for n odd, consider the integer 
n- 9.] 

7. Find all prime numbers that divide 50!. 
8. If p :::: q :::: 5 and p and q are both primes, prove that 241 p 2 - q2 . 

9. (a) An unanswered question is whether there are infinitely many primes that are 1 more 
than a power of 2, such as 5 = 22 + 1. Find two more of these primes. 

(b) A more general conjecture is that there exist infinitely many primes of the form 
n2 + 1; for example, 257 = 162 + 1. Exhibit five more primes of this type. 

10. If p =f:. 5 is an odd prime, prove that either p 2 - 1 or p 2 + 1 is divisible by 10. 
11. Another unproven conjecture is that there are an infinitude of primes that are 1 less than 

a power of 2, such as 3 = 22 - 1. 
(a) Find four more of these primes. 
(b) If p = 2k- 1 is prime, show that k is an odd integer, except when k = 2. 

[Hint: 3 14n - 1 for all n :::: 1.] 
12. Find the prime factorization of the integers 1234, 10140, and 36000. 
13. If n > 1 is an integer not of the form 6k + 3, prove that n2 + 2n is composite. 

[Hint: Show that either 2 or 3 divides n2 + 2n .] 
14. It has been conjectured that every even integer can be written as the difference of two 

consecutive primes in infinitely many ways. For example, 

' 6 = 29- 23 = 137- 131 = 599- 593 = 1019- 1013 = ... 

' Express the integer 10 as the difference of two consecutive primes in 15 ways. 
15. Prove that a positive integer a > 1 is a square if and only if in the canonical form of a 

all the exponents of the primes are even integers. 
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16. An integer is said to be square-free if it is not divisible by the square of any integer greater 
than 1. Prove the following: 
(a) An integer n > 1 is square-free if and only if n can be factored into a product of 

distinct primes. 
(b) Every integer n > 1 is the product of a square-free integer and a perfect square. 

[Hint: If n = p~' p;2 • • • p:• is the canonical factorization of n, then write ki = 
2qi + ri where ri = 0 or 1 according as ki is even or odd.] 

17. Verify that any integer n can be expressed as n = 2km, where k :::: 0 and m is an odd 
integer. 

18. Numerical evidence makes it plausible that there are infinitely many primes p such that 
p +50 is also prime. List 15 of these primes. 

19. A positive integer n is called square-full, or powerful, if p 2 I n for every prime factor p 
of n (there are 992 square-full numbers less than 250,000). If n is square-full, show that 
it can be written in the form n = a 2b3, with a and b positive integers. 

3.2 THE SIEVE OF ERATOSTHENES 

Given a particular integer, how can we determine whether it is prime or composite 
and, in the latter case, how can we actually find a nontrivial divisor? The most 
obvious approach consists of successively dividing the integer in question by each 
of the numbers preceding it; if none ofthem (except 1) serves as a divisor, then the 
integer must be prime. Although this method is very simple to describe, it cannot 
be regarded as useful in practice. For even if one is undaunted by large calculations, 
the amount of time and work involved may be prohibitive. 

There is a property of composite numbers that allows us to reduce materially 
the necessary computations-but still the process remains cumbersome. If an in­
teger a > 1 is composite, then it may be written as a= be, where 1 < b <a and 
1 < e <a. Assuming that b ::::: e, we get b2 :::::be= a, and so b::::: .j(i. Because 
b > 1, Theorem 3.2 ensures that b has at least one prime factor p. Then p ::::: b ::::: .j{i; 
furthermore, because pI band b I a, it follows that pI a. The point is simply this: A 
composite number a will always possess a prime divisor p satisfying p ::::: .j(i. 

In testing the primality of a specific integer a > 1, it therefore suffices to divide 
a by those primes not exceeding Ja (presuming, of course, the availability of a 
list of primes up to .j{i). This may be clarified by considering the integer a = 509. 
Inasmuch as 22 < .J509 < 23, we need only try out the primes that are not larger 
than 22 as possible divisors, namely, the primes 2, 3, 5, 7, 11, 13, 17, 19. Dividing 
509 by each of these, in turn, we find that none serves as a divisor of 509. The 
conclusion is that 509 must be a prime number. 

Example 3.1. The foregoing technique provides a practical means for determining the 
canonical form of an integer, say a = 2093. Because 45 < .J2093 < 46, it is enough 
to examine the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43. By trial, the 
first of these to divide 2093 is 7, and 2093 = 7 · 299. As regards the integer 299, the 
seven primes that are less than 18 (note that 17 < .J299 < 18) are 2, 3, 5, 7, 11, 13, 17. 
The first prime divisor of 299 is 13 and, carrying out the required division, we obtain 
299 = 13 · 23. But 23 is itself a prime, whence 2093 has exactly three prime factors, 
7, 13, and 23: 

2093 = 7 . 13 . 23 



PRIMES AND THEIR DISTRIBUTION 45 

Another Greek mathematician whose work in number theory remains significant 
is Eratosthenes of Cyrene (276-194 B.C.). Although posterity remembers him mainly 
as the director of the world-famous library at Alexandria, Eratosthenes was gifted in 
all branches of learning, if not of first rank in any; in his own day, he was nicknamed 
"Beta" because, it was said, he stood at least second in every field. Perhaps the 
most impressive feat of Eratosthenes was the accurate measurement of the earth's 
circumference by a simple application of Euclidean geometry. 

We have seen that if an integer a > 1 is not divisible by any prime p ::::: Ja, 
then a is of necessity a prime. Eratosthenes used this fact as the basis of a clever 
technique, called the Sieve of Eratosthenes, for finding all primes below a given 
integer n. The scheme calls for writing down the integers from 2 ton in their natural 
order and then systematically eliminating all the composite numbers by striking out 
all multiples 2p, 3p, 4p, 5p, ... of the primes p ::::: Jn. The integers that are left on 
the list-those that do not fall through the "sieve"-are primes. 

To see an example of how this works, suppose that we wish to find all primes 
not exceeding 100. Consider the sequence of consecutive integers 2, 3, 4, ... , 100. 
Recognizing that 2 is a prime, we begin by crossing out all even integers from our 
listing, except 2 itself. The first of the remaining integers is 3, which must be a 
prime. We keep 3, but strike out all higher multiples of 3, so that 9, 15, 21, ... are 
now removed (the even multiples of 3 having been removed in the previous step). 
The smallest integer after 3 that has not yet been deleted is 5. It is not divisible by 
either 2 or 3-otherwise it would have been crossed out-hence, it is also a prime. 
All proper multiples of 5 being composite numbers, we next remove 10, 15, 20, ... 
(some of these are, of course, already missing), while retaining 5 itself. The first 
surviving integer 7 is a prime, for it is not divisible by 2, 3, or 5, the only primes 
that precede it. After eliminating the proper multiples of 7, the largest prime less 
than JIOO = 10, all composite integers in the sequence 2, 3, 4, ... , 100 have fallen 
through the sieve. The positive integers that remain, to wit, 2, 3, 5, 7, 11, 13, 17, 19, 
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, are all of the primes 
less than 100. 

The following table represents the result of the completed sieve. The multiples 
of 2 are crossed out by \; the multiples of 3 are crossed out by /; the multiples of 5 
are crossed out by -; the multiples of 7 are crossed out by ,..... . 

2 3 'l4.. 5 :g 7 '8. !J * 11 M 13 * ~ M 17 M 19 * 'lf 22 23 ~ 25- 2fj ')!/ ~ 29 jfj. 

31 N J1 :M '"3'5' ~ 37 ~ J9 ~ 
41 '* 43 44 .t5 411 47 ~ -49' ~ 
gi 52 53 ~ -55- ~ 511 jg 59 .00 
61 ~ ~ 114 ~ ~ 67 68 piJ *' 
71 n 73 7>4 75 7& -79' ]g 79 -86 
,81 SQ 83 * -85- 8(j WI Ml 89 -9Q 

'* ~ ~ ~ -9§- 9<i 97 * ~ 00. 

By this point, an obvious question must have occurred to the reader. Is there a 
largest prime number, or do the primes go on forever? The answer is to be found 
in a remarkably simple proof given by Euclid in Book IX of his Elements. Euclid's 
argument is universally regarded as a model of mathematical elegance. Loosely 
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speaking, it goes like this: Given any finite list of prime numbers, one can always 
find a prime not on the list; hence, the number of primes is infinite. The actual details 
appear below. 

Theorem 3.4 Euclid. There is an infinite number of primes. 

Proof. Euclid's proof is by contradiction. Let PI = 2, P2 = 3, P3 = 5, P4 = 7, ... be 
the primes in ascending order, and suppose that there is a last prime, called Pn· Now 
consider the positive integer 

P = Pi P2 · · · Pn + 1 

Because P > 1, we may put Theorem 3.2 to work once again and conclude that P 
is divisible by some prime p. But p 1, P2· ... , Pn are the only prime numbers, so 
that p must be equal to one of p1 , p2, ... , Pn. Combining the divisibility relation 
p I PI P2 · · · Pn with p I P, we arrive at p I P - Pi P2 · · · Pn or, equivalently, p 11. The 
only positive divisor of the integer 1 is 1 itself and, because p > 1, a contradiction 
arises. Thus, no finite list of primes is complete, whence the number of primes is 
infinite. 

For a prime p, define p# to be the product of all primes that are less than or equal 
top. Numbers of the form p# + 1 might be termed Euclidean numbers, because they 
appear in Euclid's scheme for proving the infinitude of primes. It is interesting to 
note that in forming these integers, the first five, namely, 

2# + 1 = 2 + 1 = 3 

3# + 1 = 2 . 3 + 1 = 7 

5# + 1 = 2 . 3 . 5 + 1 = 31 

7# + 1 = 2 . 3 . 5 . 7 + 1 = 211 

11# + 1 = 2. 3. 5. 7. 11 + 1 = 2311 

are all prime numbers. However, 

13# + 1 = 59 . 509 

17# + 1 = 19.97. 277 

19# + 1 = 347. 27953 

are not prime. A question whose answer is not known is whether there are infinitely 
many primes p for which p# + 1 is also prime. For that matter, are there infinitely 
many composite p# + 1? 

At present, 19 primes of the form p# + 1 have been identified. These correspond 
to the values p = 2, 3, 5, 7, 11, 31,379, 1019, 1021,2657,3229,4547,4787, 11549, 
13649, 18523, 23801,24029, and 42209; the largest of these, a number consisting of 
18241 digits, was discovered in 2000. The integer p# + 1 is composite for all other 
p s 120000. 
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Euclid's theorem is too important for us to be content with a single proof. Here 
is a variation in the reasoning: Form the infinite sequence of positive integers 

n 1 = 2 

nz = n1 + 1 

n3 = n1n2 + 1 

n4 = n1n2n3 + 1 

Because each nk > 1, each of these integers is divisible by a prime. But no two 
nk can have the same prime divisor. To see this, let d = gcd(n; , nk) and suppose 
that i < k. Then d divides n; and, hence, must divide n1nz · · · nk-l· Because dInk. 
Theorem 2.2 (g) tells us that dInk - n1nz · · · nk-l or d 11. The implication is that 
d = 1, and so the integers nk(k = 1, 2, ... ) are pairwise relatively prime. The point 
we wish to make is that there are as many distinct primes as there are integers nk. 
namely, infinitely many of them. 

Let Pn denote the nth of the prime numbers in their natural order. Euclid's proof 
shows that the expression p 1pz · · · Pn + 1 is divisible by at least one prime. If there 
are several such prime divisors, then Pn+l cannot exceed the smallest of these so 
that Pn+l ::S P1P2 · · · Pn + 1 for n ::=: 1. Another way of saying the same thing is that 

Pn ::S P1P2 · · · Pn-1 + 1 

With a slight modification of Euclid's reasoning, this inequality can be improved to 
give 

Pn ::S P1P2 · · · Pn-1 - 1 n :::: 3 
For instance, when n = 5, this tells us that 

11 = Ps ::S 2 · 3 · 5 · 7 - 1 = 209 

We can see that the estimate is rather extravagant. A sharper limitation on the size 
of Pn is given by Bonse's inequality, which states that 

P~ < P1Pz · · · Pn-1 n :::: 5 

This inequality yields p~ < 210, or p5 ::=:: 14. A somewhat better size-estimate for 
Ps comes from the inequality 

Pzn ::S P2P3 · · · Pn - 2 
Here, we obtain 

Ps < P6 ::S P2P3 - 2 = 3 · 5 - 2 = 13 

To approximate the size of Pn from these formulas, it is necessary to know the 
values of p 1, pz, ... , Pn-l· For a bound in which the preceding primes do not enter 
the picture, we have the following theorem. 

Theorem 3.5. If Pn is the nth prime number, then Pn .::::: 22n-l. 
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Proof. Let us proceed by induction on n, the asserted inequality being clearly true 
when n = 1. As the hypothesis of the induction, we assume that n > 1 and that the 
result holds for all integers upton. Then 

Pn+I _:::: PIP2 · · · Pn + 1 
.:::: 2. 22 ... 22•-1 + 1 = 21+2+22+··+2"-1 + 1 

Recalling the identity 1 + 2 + 22 + · · · + 2n-I = 2n - 1, we obtain 

Pn+I _:::: 22"-l + 1 

However, 1 _:::: 22"-I for all n; whence 

Pn+I _:::: 22"-1 + 22"-1 

= 2. 22"-1 = 22" 

completing the induction step, and the argument. 

There is a corollary to Theorem 3.5 that is of interest. 

Corollary. For n :::: 1, there are at least n + 1 primes less than 22". 

Proof. From the theorem, we know that PI, p2, ... , Pn+I are all less than 22". 

We can do considerably better than is indicated by Theorem 3.5. In 1845, Joseph 
Bertrand conjectured that the prime numbers are well-distributed in the sense that 
between n ~ 2 and 2n there is at least one prime. He was unable to establish his con­
jecture, but verified it for all n S 3,000,000. (One way of achieving this is to consider 
a sequence of primes 3, 5, 7, 13, 23, 43, 83, 163, 317,631, 1259,2503, 5003,9973, 
19937, 39869, 79699, 159389, ... each of which is less than twice the preceding.) 
Because it takes some real effort to substantiate this famous conjecture, let us content 
ourselves with saying that the first proof was carried out by the Russian mathemati­
cian P. L. Tchebycheff in 1852. Granting the result, it is not difficult to show that 

and as a direct consequence, Pn+I < 2pn for n ~ 2. In particular, 

11 = Ps < 2 · P4 = 14 

To see that Pn < 2n, we argue by induction on n. Clearly, P2 = 3 < 22, so that 
the inequality is true here. Now assume that the inequality holds for an integer n, 
whence Pn < 2n. Invoking Bertrand's conjecture, there exists a prime number p 
satisfying 2n < p < 2n+ 1; that is, Pn < p. This immediately leads to the conclusion 
that Pn+I S p < 2n+I, which completes the induction and the proof. 

Primes of special form have been of perennial interest. Among these, the re­
punit primes are outstanding in their simplicity. A repunit is an integer written (in 
decimal notation) as a string of 1 's, such as 11, 111, or 1111. Each such integer must 
have the form (IOn - 1)/9. We use the symbol Rn to denote the repunit consisting 
of n consecutive 1 's. A peculiar feature of these numbers is the apparent scarcity 
of primes among them. So far, only R2, R19, R23, R317, Rw3J, R4908I. and Rs6453 
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have been identified as primes (the last one in 2001). It is known that the only 
possible repunit primes Rn for all n :S 45000 are the seven numbers just indicated. 
No conjecture has been made as to the existence of any others. For a repunit Rn to 
be prime, the subscript n must be a prime; that this is not a sufficient condition is 
shown by 

R5 = 11111 = 41 · 271 R7 = 1111111 = 239 · 4649 

PROBLEMS 3.2 

1. Determine whether the integer 701 is prime by testing all primes p ::::; J70f as possible 
divisors. Do the same for the integer 1009. 

2. Employing the Sieve of Eratosthenes, obtain all the primes between 100 and 200. 
3. Given that p X n for all primes p ::::; :q'ii, show that n > 1 is either a prime or the product 

of two primes. 
[Hint: Assume to the contrary that n contains at least three prime factors.] 

4. Establish the following facts: 
(a) ..jP is irrational for any prime p. 
(b) If a > 0 and !Yfi is rational, then !Yfi must be an integer. 
(c) For n :::: 2, !!/fi is irrational. 

[Hint: Use the fact that 2n > n.] 
5. Show that any composite three-digit number must have a prime factor less than or equal 

to 31. 
6. Fill in any missing details in this sketch of a proof of the infinitude of primes: Assume 

that there are only finitely many primes, say PI, pz, ... , Pn. Let A be the product of any 
r of these primes and put B = PIP2 · · · Pnl A. Then each Pk divides either A orB, but 
not both. Because A + B > 1, A + B has a prime divisor different from any of the Pk. 
which is a contradiction. 

7. Modify Euclid's proof that there are infinitely many primes by assuming the existence 
of a largest prime p and using the integer N = p! + 1 to arrive at a contradiction. 

8. Give another proof of the infinitude of primes by assuming that there are only finitely many 
primes, say p1, p 2 , ••• , Pn• and using the following integer to arrive at a contradiction: 

N = P2P3 · · · Pn + PIP3 · · · Pn + · · · + P1P2 · · · Pn-1 

9. (a) Prove that if n > 2, then there exists a prime p satisfying n < p < n!. 
[Hint: If n! - 1 is not prime, then it has a prime divisor p; and p ::::; n implies p I n!, 
leading to a contradiction.] 

(b) For n > 1, show that every prime divisor of n! + 1 is an odd integer that is greater 
thann. 

10. Let qn be the smallest prime that is strictly greater than Pn = PI pz · · · Pn + 1.1t has been 
conjectured that the difference qn - (p1 p 2 · · · Pn) is always a prime. Confirm this for the 
first five values of n. 

11. If Pn denotes the nth prime number, put dn = Pn+l - Pn· An open question is whether 
the equation dn = dn+l has infinitely many solutions. Give five solutions. 

12. Assuming that Pn is the nth prime number, establish each of the following statements: 
(a) Pn > 2n - 1 for n 0::: 5. 
(b) None of the integers Pn = PIP2 · · · Pn + 1 is a perfect square. 

[Hint: Each Pn is of the form 4k + 3 for n > 1.] 
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(c) The sum 

is never an integer. 

1 1 1 
-+-+···+­
Pi Pz Pn 

13. For the repunits Rn, verify the assertions below: 
(a) IfnI m, then Rn I Rm. 

[Hint: If m = kn, consider the identity 

Xm _ 1 = (xn _ l)(x(k-l)n + x<k-2)n + ... + xn + l).] 

(b) If d I Rn and d I Rm, then d I Rn+m· 
[Hint: Show that Rm+n = Rn 10m+ Rm.] 

(c) If gcd(n, m) = 1, then gcd(Rn, Rm) = 1. 
14. Use the previous problem to obtain the prime factors of the repunit R10 • 

3.3 THE GOLDBACH CONJECTURE 

Although there is an infinitude of primes, their distribution within the positive inte­
gers is most mystifying. Repeatedly in their distribution we find hints or, as it were, 
shadows of a pattern; yet an actual pattern amenable to precise description remains 
elusive. The difference between consecutive primes can be small, as with the pairs 
11 and 13, 17 and 19, or for that matter 1000000000061 and 1000000000063. At 
the same time there exist arbitrarily long intervals in the sequence of integers that 
are totally devoid of any primes. 

It is an unanswered question whether there are infinitely many pairs of twin 
primes; that is, pairs of successive odd integers p and p + 2 that are both primes. 
Numerical evidence leads us to suspect an affirmative conclusion. Electronic com­
puters have discovered 152892 pairs of twin primes less than 30000000 and 20 pairs 
between 1012 and 1012+ 10000, which hints at their growing scarcity as the positive 
integers increase in magnitude. Many examples of immense twins are known. The 
largest twins to date, each 51090 digits long, 

33218925 . 2169690 ± 1 

were discovered in 2002. 
Consecutive primes cannot only be close together, but also can be far apart; that 

is, arbitrarily large gaps can occur between consecutive primes. Stated precisely: 
Given any positive integer n, there exist n consecutive integers, all of which are 
composite. To prove this, we simply need to consider the integers 

(n + 1)! + 2, (n + 1)! + 3, ... , (n + 1)! + (n + 1) 

where (n + 1)! = (n + 1) · n · · · 3 · 2 · 1. Clearly, there are n integers listed and 
they are consecutive. What is important is that each integer is composite. Indeed, 
(n + 1)! + 2 is divisible by 2, (n + 1)! + 3 is divisible by 3, and so on. 

For instance, if a sequence of four consecutive composite integers is desired, 
then the previous argument produces 122, 123, 124, and 125: 

5! + 2 = 122 = 2 . 61 

5! + 3 = 123 = 3. 41 

5! + 4 = 124 = 4. 31 

5! + 5 = 125 = 5. 25 
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Of course, we can find other sets of four consecutive composites, such as 24, 25, 26, 
27 or 32, 33, 34, 35. 

As this example suggests, our procedure for constructing gaps between two con­
secutive primes gives a gross overestimate of where they occur among the integers. 
The first occurrences of prime gaps of specific lengths, where all the intervening inte­
gers are composite, have been the subject of computer searches. For instance, there is 
a gap oflength 778 (that is, Pn+! - Pn = 778) following the prime 42842283925351. 
No gap of this size exists between two smaller primes. The largest effectively cal­
culated gap between consecutive prime numbers has length 1132, with a string of 
1131 composites immediately after the prime 

1693182318746371 

Interestingly, computer researchers have not identified gaps of every possible width 
up to 1132. The smallest missing gap size is 796. The conjecture is that there is a 
prime gap (a string of 2k - 1 consecutive composites between two primes) for every 
even integer 2k. 

This brings us to another unsolved problem concerning the primes, the Gold­
bach conjecture. In a letter to Leonhard Euler in the year 1742, Christian Goldbach 
hazarded the guess that every even integer is the sum of two numbers that are either 
primes or 1. A somewhat more general formulation is that every even integer greater 
than 4 can be written as a sum of two odd prime numbers. This is easy to confirm 
for the first few even integers: 

2=1+1 

4=2+2=1+3 

6=3+3=1+5 

8=3+5=1+7 

10=3+7=5+5 

12 = 5 + 7 = 1 + 11 

14 = 3 + 11 = 7 + 7 = 1 + 13 

16 = 3 + 13 = 5 + 11 

18 = 5 + 13 = 7 + 11 = 1 + 17 

20 = 3 + 17 = 7 + 13 = 1 + 19 

22 = 3 + 19 = 5 + 17 = 11 + 11 

24 = 5 + 19 = 7 + 17 = 11 + 13 = 1 + 23 

26 = 3 + 23 = 7 + 19 = 13 + 13 

28 = 5 + 23 = 11 + 17 

30 = 7 + 23 = 11 + 19 = 13 + 17 = 1 + 29 

Although it seems that Euler never tried to prove the result, upon writing to Goldbach 
at a later date, Euler countered with a conjecture of his own: Any even integer(:::: 6) 
of the form 4n + 2 is a sum of two numbers each being either a prime of the form 
4n + 1 or 1. 

The numerical data suggesting the truth of Goldbach's conjecture are over­
whelming. It has been verified by computers for all even integers less than 4 · 1014• 
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As the integers become larger, the number of different ways in which 2n can be 
expressed as the sum of two primes increases. For example, there are 219400 such 
representations for the even integer 100000000. Although this supports the feeling 
that Goldbach was correct in his conjecture, it is far from a mathematical proof, 
and all attempts to obtain a proof have been completely unsuccessful. One of the 
most famous number theorists of the last century, G. H. Hardy, in his address to the 
Mathematical Society of Copenhagen in 1921, stated that the Goldbach conjecture 
appeared " ... probably as difficult as any of the unsolved problems in mathematics." 
It is currently known that every even integer is the sum of six or fewer primes. 

We remark that if the conjecture of Goldbach is true, then each odd number 
larger than 7 must be the sum of three odd primes. To see this, take n to be an odd 
integer greater than 7, so that n - 3 is even and greater than 4; if n - 3 could be 
expressed as the sum of two odd primes, then n would be the sum of three. 

The first real progress on the conjecture in nearly 200 years was made by Hardy 
and Littlewood in 1922. On the basis of a certain unproved hypothesis, the so­
called generalized Riemann hypothesis, they showed that every sufficiently large 
odd number is the sum of three odd primes. In 1937, the Russian mathematician 
I. M. Vinogradov was able to remove the dependence on the generalized Riemann 
hypothesis, thereby giving an unconditional proof of this result; that is to say, he 
established that all odd integers greater than some effectively computable no can be 
written as the sum of three odd primes. 

n =PI+ P2 + P3 (n odd, n sufficiently large) 

Vinogradov was unable to decide how large no should be, but Borozdkin (1956) 
proved that n0 < 3315 • In 2002, the bound on no was reduced to 101346 • It follows 
immediately that every even integer from some point on is the sum of either two 
or four primes. Thus, it is enough to answer the question for every odd integer n 
in the range 9 ::::: n ::::: n0 , which, for a given integer, becomes a matter of tedious 
computation (unfortunately, no is so large that this exceeds the capabilities of the 
most modem electronic computers). 

Because of the strong evidence in favor of the famous Goldbach conjecture, we 
readily become convinced that it is true. Nevertheless, it might be false. Vinogradov 
showed that if A(x) is the number of even integers n ::::: x that are not the sum of two 
primes, then 

lim A(x)jx = 0 
X--->00 

This allows us to say that "almost all" even integers satisfy the conjecture. As Edmund 
Landau so aptly put it, "The Goldbach conjecture is false for at most 0% of all even 
integers; this at most 0% does not exclude, of course, the possibility that there are 
infinitely many exceptions." 

Having digressed somewhat, let us observe that according to the DivisionAl­
gorithm, every positive integer can be written uniquely in one of the forms 

4n 4n+ 1 4n +2 4n+3 
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for some suitable n ~ 0. Clearly, the integers 4n and 4n + 2 = 2(2n + 1) are both 
even. Thus, all odd integers fall into two progressions: one containing integers of 
the form 4n + 1, and the other containing integers of the form 4n + 3. 

The question arises as to how these two types of primes are distributed within the 
set of positive integers. Let us display the first few odd prime numbers in consecutive 
order, putting the 4n + 3 primes in the top row and the 4n + 1 primes under them: 

3 7 11 19 23 31 43 47 59 67 71 79 83 

5 13 17 29 37 41 53 61 73 89 

At this point, one might have the general impression that primes of the form 
4n + 3 are more abundant than are those of the form 4n + 1. To obtain more precise 
information, we require the help of the function 1fa,b(x ), which counts the number 
of primes of the form p = an + b not exceeding x. Our small table, for instance, 
indicates that rr4, 1 (89) = 10 and rr4,3(89) = 13. 

In a famous letter written in 1853, Tchebycheffremarked that rr4,1 (x) ::::: 1f4,3(x) 
for small values of x. He also implied that he had a proof that the inequality always 
held. In 1914, J. E. Littlewood showed that the inequality fails infinitely often, but 
his method gave no indication of the value of x for which this first happens. It turned 
out to be quite difficult to find. Not until 1957 did a computer search reveal that 
x = 26861 is the smallest prime for which rr4,1(x) > rr4,3(x); here, rr4,1(x) = 1473 
and 1f4,3(x) = 1472. This is an isolated situation, because the next prime at which a 
reversal occurs is x = 616,841. Remarkably, rr4,1(x) > rr4,3(x) for the 410 million 
successive integers x lying between 18540000000 and 18950000000. 

The behavior of primes of the form 3n ± 1 provided more of a computa­
tional challenge: the inequality rr3,1(x)::::: rr3,2(x) holds for all x until one reaches 
X =608981813029. 

This furnishes a pleasant opportunity for a repeat performance of Euclid's 
method for proving the existence of an infinitude of primes. A slight modifica­
tion of his argument reveals that there is an infinite number of primes of the form 
4n + 3. We approach the proof through a simple lemma. 

Lemma. The product of two or more integers of the form 4n + 1 is of the same form. 

Proof. It is sufficient to consider the product of just two integers. Let us take k = 4n + 1 
and k' = 4m + 1. Multiplying these together, we obtain 

kk' = (4n + 1)(4m + 1) 

= 16nm + 4n + 4m + 1 = 4(4nm + n +..m) + 1 

which is of the desired form. 

This paves the way for Theorem 3.6. 

Theorem 3.6. There are an infinite number of primes of the form 4n + 3. 
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Proof. In anticipation of a contradiction, let us assume that there exist only finitely 
many primes of the form4n + 3; call them q1, q2 , ••• , q •. Consider the positive integer 

N = 4q,q2 · · · q. - 1 = 4(q,q2 · · · q. - 1) + 3 

and let N = r 1r 2 · · · r 1 be its prime factorization. Because N is an odd integer, we have 
rk =I= 2 for all k, so that each rk is either of the form 4n + 1 or 4n + 3. By the lemma, 
the product of any number of primes of the form 4n + 1 is again an integer of this type. 
For N to take the form 4n + 3, as it clearly does, N must contain at least one prime 
factor ri of the form 4n + 3. But ri cannot be found among the listing q1, q2 , ••• , q., 
for this would lead to the contradiction that ri 11. The only possible conclusion is that 
there are infinitely many primes of the form 4n + 3. 

Having just seen that there are infinitely many primes of the form 4n + 3, we 
might reasonably ask: Is the number of primes of the form 4n + 1 also infinite? This 
answer is likewise in the affirmative, but a demonstration must await the development 
of the necessary mathematical machinery. Both these results are special cases of a 
remarkable theorem by P. G. L. Dirichlet on primes in arithmetic progressions, 
established in 1837. The proof is much too difficult for inclusion here, so that we 
must content ourselves with the mere statement. 

Theorem 3.7 Dirichlet. If a and bare relatively prime positive integers, then the 
arithmetic progression 

a, a+ b, a + 2b, a+ 3b, ... 

contains infinitely many primes. 

Dirichlet's theorem tells us, for instance, that there are infinitely many prime 
numbers ending in 999, such as 1999, 100999, 1000999, ... for these appear in the 
arithmetic progression determined by 1000n + 999, where gcd(lOOO, 999) = 1. 

There is no arithmetic progression a, a+ b, a+ 2b, ... that consists solely of 
prime numbers. To see this, suppose that a + nb = p, where p is a prime. If we put 
nk = n + kp fork= 1, 2, 3, ... then the nkth term in the progression is 

a+ nkb =a+ (n + kp)b =(a+ nb) + kpb = p + kpb 

Because each term on the right-hand side is divisible by p, so is a+ nkb. In other 
words, the progression must contain infinitely many composite numbers. 

It is an old, but still unsolved question of whether there exist arbitrarily long 
but finite arithmetic progressions consisting only of prime numbers (not necessarily 
consecutive primes). The longest progression found to date is composed of the 22 
primes: 

11410337850553+4609098694200n 0 ~ n ~ 21 

The prime factorization of the common difference between the terms is 

23 . 3. 52 .7. 11. 13. 17. 19.23. 1033 

which is divisible by 9699690, the product of the primes less than 22. This takes 
place according to Theorem 3.8. 
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Theorem 3.8. If all the n > 2 terms of the arithmetic progression 

p, p + d, p + 2d, ... , p + (n- l)d 

are prime numbers, then the common differenced is divisible by every prime q < n. 

Proof. Consider a prime number q < n and assume to the contrary that q l d. We 
claim that the first q terms of the progression 

p, p + d, p + 2d, ... ' p + (q- l)d (1) 

will leave different remainders when divided by q. Otherwise there exist integers j 
and k, with 0 ~ j < k ~ q - 1, such that the numbers p + jd and p + kd yield the 
same remainder upon division by q. Then q divides their difference (k- j)d. But 
gcd(q , d) = 1, and so Euclid's lemma leads to q I k - j, which is nonsense in light of 
the inequality k - j ~ q - 1. 

Because the q different remainders produced from Eq. (1) are drawn from the 
q integers 0, 1, ... , q- 1, one of these remainders must be zero. This means that 
q I p + td for some t satisfying 0 ~ t ~ q- 1. Because of the inequality q < n ~ 
p ~ p + td, we are forced to conclude that p + td is composite. (If p were less 
than n, one of the terms of the progression would be p + pd = p(l +d).) With this 
contradiction, the proof that q I d is complete. 

It has been conjectured that there exist arithmetic progressions of finite (but 
otherwise arbitrary) length, composed of consecutive prime numbers. Examples of 
such progressions consisting of three and four primes, respectively, are 47, 53, 59, 
and 251, 257, 263, 269. 

Most recently a sequence of 10 consecutive primes was discovered in which each 
term exceeds its predecessor by just 210; the smallest ofthese primes has 93 digits. 
Finding an arithmetic progression consisting of 11 consecutive primes is likely to 
be out of reach for some time. Absent the restriction that the primes involved be 
consecutive, strings of 11-term arithmetic progressions are easily located. One such 
is 

110437 + 13860n O~n~10 

In the interest of completeness, we might mention another famous problem that, 
so far, has resisted the most determined attack. For centuries, mathematicians have 
sought a simple formula that would yield every prime number or, failing this, a 
formula that would produce nothing but primes. At first glance, the request seems 
modest enough: Find a function f (n) whose domain is, say, the nonnegative integers 
and whose range is some infinite subset of the set of all primes. It was widely believed 
years ago that the quadratic polynomial 

f(n) = n2 + n + 41 

assumed only prime values. This was shown to be false by Euler, in 1772. As 
evidenced by the following table, the claim is a correct one for n = 0, 1, 2, ... , 39. 



56 ELEMENTARY NUMBER TIIEORY 

n f(n) n f(n) n f(n) 

0 41 14 251 28 853 
43 15 281 29 911 

2 47 16 313 30 971 
3 53 17 347 31 1033 
4 61 18 383 32 1097 
5 71 19 421 33 1163 
6 83 20 461 34 1231 
7 97 21 503 35 1301 
8 113 22 547 36 1373 
9 131 23 593 37 1447 

10 151 24 641 38 1523 
11 173 25 691 39 1601 
12 197 26 743 
13 223 27 797 

However, this provocative conjecture is shattered in the cases n = 40 and n = 41, 
where there is a factor of 41: 

/(40) = 40.41 +41 = 412 

and 

/(41) = 41 . 42 + 41 = 41 . 43 

The next value /(42) = 1847 turns out to be prime once again. In fact, for the 
first 100 integer values of n, the so-called Euler polynomial represents 86 primes. 
Although it starts off very well in the production of primes, there are other quadratics 
such as 

g(n) = n2 + n + 27941 

that begin to best f(n) as the values of n become larger. For example, g(n) is prime 
for 286129 values of 0 ~ n ~ 106, whereas its famous rival yields 261081 primes 
in this range. 

It has been shown that no polynomial of the form n2 + n + q, with q a prime, 
can do better than the Euler polynomial in giving primes for successive values of n. 
Indeed, until fairly recently no other quadratic polynomial of any kind was known 
to produce more than 40 successive prime values. The polynomial 

h(n) = 103n2 - 3945n + 34381 

found in 1988, produces 43 distinct prime values for n = 0, 1, 2, ... , 42. The current 
record holder in this regard 

k(n) = 36n2 - 810n + 2753 

does slightly better by giving a string of 45 prime values. 
The failure of the previous functions to be prime-producing is no accident, 

for it is easy to prove that there is no nonconstant polynomial f(n) with integral 
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coefficients that takes on just prime values for integral n. We assume that such a 
polynomial f(n) actually does exist and argue until a contradiction is reached. Let 

f(n) = aknk + ak-lnk-l + · · · + a2n2 + a1n + ao 

where all the coefficients ao, a1, ... , ak are integers, and ak =j:. 0. For a fixed value of 
(no), p = f(no) is a prime number. Now, for any integer t, we consider the following 
expression: 

f(no + tp) = ak(no + tpl + · · · + a1(no + tp) + ao 

= (akn~ + · · · + a1no + ao) + pQ(t) 

= f(no) + pQ(t) 

= p + pQ(t) = p(l + Q(t)) 

where Q(t) is a polynomial in t having integral coefficients. Our reasoning shows 
that pI f(no + tp); hence, from our own assumption that f(n) takes on only prime 
values, f (no + t p) = p for any integer t. Because a polynomial of degree k can­
not assume the same value more than k times, we have obtained the required 
contradiction. 

Recent years have seen a measure of success in the search for prime-producing 
functions. W. H. Mills proved (1947) that there exists a positive real number r such 
that the expression f(n) = [r3"] is prime for n = 1, 2, 3, ... (the brackets indicate 
the greatest integer function). Needless to say, this is strictly an existence theorem 
and nothing is known about the actual value of r. Mills's function does not produce 
all the primes. 

PROBLEMS 3.3 

1. Verify that the integers 1949 and 1951 are twin primes. 
2. (a) If 1 is added to a product of twin primes, prove that a perfect square is always 

obtained. 
(b) Show that the sum of twin primes p and p + 2 is divisible by 12, provided that p > 3. 

3. Find all pairs of primes p and q satisfying p- q = 3. 
4. Sylvester (1896) rephrased the Goldbach conjecture: Every even integer 2n greater than 

4 is the sum of two primes, one larger than n /2 and the other less than 3n j2. Verify this 
version of the conjecture for all even integers between 6 and 76. 

5. In 1752, Goldbach submitted the following conjecture to Euler: Every odd integer can 
be written in the form p + 2a2 , where p is either a prime or 1 and a 2: 0. Show that the 
integer 5777 refutes this conjecture. 

6. Prove that the Goldbach conjecture that every even integer greater than 2 is the sum of 
two primes is equivalent to the statement that every integer greater than 5 is the sum of 
three primes. 
[Hint: If 2n - 2 = Pi + p2, then 2n = Pi + P2 + 2 and 2n + 1 = Pi + P2 + 3.] 

7. A conjecture of Lagrange (1775) asserts that every odd integer greater than 5 can be 
written as a sum Pi + 2p2, where Pi· p2 are both primes. Confirm this for all odd 
integers through 75. 

8. Given a positive integer n, it can be shown that there exists an even integer a that is 
representable as the sum of two odd primes inn different ways. Confirm that the integers 
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60, 78, and 84 can be written as the sum of two primes in six, seven, and eight ways, 
respectively. 

9. (a) For n > 3, show that the integers n, n + 2, n + 4 cannot all be prime. 
(b) Three integers p, p + 2, p + 6, which are all prime, are called a prime-triplet. Find 

five sets of prime-triplets. 
10. Establish that the sequence 

(n + 1)! - 2, (n + 1)! - 3, ... , (n + 1)! - (n + 1) 

produces n consecutive composite integers for n > 2. 
11. Find the smallest positive integer n for which the function f(n) = n2 + n + 17 is com­

posite. Do the same for the functions g(n) = n2 + 21n + 1 and h(n) = 3n2 + 3n + 23. 
12. Let Pn denote the nth prime number. For n :=::: 3, prove that p~+3 < PnPn+IPn+Z· 

[Hint: Note that p~+3 < 4p~+Z < 8Pn+1Pn+2·] 
13. Apply the same method of proof as in Theorem 3.6 to show that there are infinitely many 

primes of the form 6n + 5. 
14. Find a prime divisor of the integer N = 4(3 · 7 · 11) - 1 of the form 4n + 3. Do the same 

for N = 4(3 · 7 · 11 · 15) - 1. 
15. Another unanswered question is whether there exist an infinite number of sets of five 

consecutive odd integers of which four are primes. Find five such sets of integers. 
16. Let the sequence of primes, with 1 adjoined, be denoted by p0 = 1, p 1 = 2, p2 = 3, 

p 3 = 5, .... For each n :::: 1, it is known that there exists a suitable choice of coefficients 
Ek = ± 1 such that 

2n-2 

P2n = P2n-1 + L EkPk 
k=O 

2n-l 

P2n+l = 2p2n + L EkPk 
k=O 

To illustrate: 

13 = 1 + 2- 3 - 5 + 7 + 11 

and 

17 = 1 + 2- 3- 5 + 7- 11 + 2. 13 

Determine similar representations for the primes 23, 29, 31, and 3 7. 
17. In 1848, de Polignac claimed that every odd integer is the sum of a prime and a power of 

2. For example, 55 = 47 + 23 = 23 + 25 . Show that the integers 509 and 877 discredit 
this claim. 

18. (a) If p is a prime and p l b, prove that in the arithmetic progression 

a, a+ b, a+ 2b, a+ 3b, ... 

every pth term is divisible by p. 
[Hint: Because gcd(p, b)= 1, there exist integers rands satisfying pr + bs = 1. 
Put nk = kp- as fork= 1, 2, ... and show that pI (a+ nkb).] 

(b) From part (a), conclude that if b is an odd integer, then every other term in the 
indicated progression is even. 

19. In 1950, it was proved that any integer n > 9 can be written as a sum of distinct odd 
primes. Express the integers 25, 69, 81, and 125 in this fashion. 

20. If p and p 2 + 8 are both prime numbers, prove that p 3 + 4 is also prime. 
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21. (a) For any integer k > 0, establish that the arithmetic progression 

a + b, a+ 2b, a+ 3b, ... 

where gcd(a, b)= 1, contains k consecutive terms that are composite. 
[Hint: Put n =(a+ b)(a + 2b) ···(a+ kb) and consider the k terms a+ (n + 1)b, 
a + (n + 2)b, ... , a+ (n + k)b.] 

(b) Find five consecutive composite terms in the arithmetic progression 

6, 11, 16,21,26,31,36, ... 

22. Show that 13 is the largest prime that can divide two successive integers of the form 
n2 +3. 

23. (a) The arithmetic mean of the twin primes 5 and 7 is the triangular number 6. Are there 
any other twin primes with a triangular mean? 

(b) The arithmetic mean of the twin primes 3 and 5 is the perfect square 4. Are there any 
other twin primes with a square mean? 

24. Determine all twin primes p and q = p + 2 for which pq - 2 is also prime. 
25. Let Pn denote the nth prime. For n > 3, show that 

Pn < PI + Pz + · · · + Pn-1 

[Hint: Use induction and the Bertrand conjecture.] 
26. Verify the following: 

(a) There exist infinitely many primes ending in 33, such as 233, 433, 733, 1033, .... 
[Hint: Apply Dirichlet's theorem.] 

(b) There exist infinitely many primes that do not belong to any pair of twin primes. 
[Hint: Consider the arithmetic progression 21k + 5 fork= 1, 2, .... ] 

(c) There exists a prime ending in as many consecutive 1 's as desired. 
[Hint: To obtain a prime ending inn consecutive 1 's, consider the arithmetic pro­
gression lOnk + Rn fork= 1, 2, .... ] 

(d) There exist infinitely many primes that contain but do not end in the block of digits 
123456789. 
[Hint: Consider the arithmetic progression 1011 k + 1234567891 fork= 1, 2, .... ] 

27. Prove that for every n :=::: 2 there exists a prime p with p ::::: n < 2p. 
[Hint: In the case where n = 2k + 1, then by the Bertrand conjecture there exists a prime 
p such that k < p < 2k.] 

28. (a) If n > 1, show that n! is never a perfect square. 
(b) Find the values of n :=::: 1 for which 

n! + (n + 1)! + (n + 2)! 

is a perfect square. 
[Hint: Note that n! + (n + 1)! + (n + 2)! = n!(n + 2)2 .] 





CHAPTER 

4 
THE THEORY OF CONGRUENCES 

Gauss once said "Mathematics is the queen of the sciences and number-theory 
the queen of mathematics." If this be true we may add that the Disquisitiones 

is the Magna Charta of number-theory. 
M. CANTOR 

4.1 CARL FRIEDRICH GAUSS 

Another approach to divisibility questions is through the arithmetic of remainders, 
or the theory of congruences as it is now commonly known. The concept, and 
the notation that makes it such a powerful tool, was first introduced by the German 
mathematician Carl Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae; 
this monumental work, which appeared in 1801 when Gauss was 24 years old, laid 
the foundations of modem number theory. Legend has it that a large part of the 
Disquisitiones Arithmeticae had been submitted as a memoir to the French Academy 
the previous year and had been rejected in a manner that, even if the work had been 
as worthless as the referees believed, would have been inexcusable. (In an attempt 
to lay this defamatory tale to rest, the officers of the Academy made an exhaustive 
search of their permanent records in 1935 and concluded that the Disquisitiones was 
never submitted, much less rejected.) "It is really astonishing," said Kronecker, "to 
think that a single man of such young years was able to bring to light such a wealth 
of results, and above all to present such a profound and well-organized treatment of 
an entirely new discipline." 
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Carl Friedrich Gauss 
(1777-1855) 

(Dover Publications, Inc.) 

Gauss was one of those remarkable infant prodigies whose natural aptitude for 
mathematics soon becomes apparent. As a child of age three, according to a well­
authenticated story, he corrected an error in his father's payroll calculations. His 
arithmetical powers so overwhelmed his schoolmasters that, by the time Gauss was 
7 years old, they admitted that there was nothing more they could teach the boy. It is 
said that in his first arithmetic class Gauss astonished his teacher by instantly solving 
what was intended to be a "busy work" problem: Find the sum of all the numbers 
from 1 to 100. The young Gauss later confessed to having recognized the pattern 

1 + 100 = 101,2 + 99 = 101,3 + 98 = 101, ... ' 50+ 51= 101 

Because there are 50 pairs of numbers, each of which adds up to 101, the sum of 
all the numbers must be 50· 101 = 5050. This technique provides another way of 
deriving the formula 

n(n + 1) 
1 + 2 + 3 + · · · + n = --2-

for the sum of the first n positive integers. One need only display the consecutive 
integers 1 through n in two rows as follows: 

1 2 3 n-1 n 

n n-1 n-2 ··· 2 1 

Addition of the vertical columns produces n terms, each of which is equal to n + 1; 
when these terms are added, we get the value n(n + 1). Because the same sum is 
obtained on adding the two rows horizontally, what occurs is the formula n(n + 1) = 
2(1 + 2 + 3 + · · · + n). 

Gauss went on to a succession of triumphs, each new discovery following on 
the heels of a previous one. The problem of constructing regular polygons with only 
"Euclidean tools," that is to say, with ruler and compass alone, had long been laid 
aside in the belief that the ancients had exhausted all the possible constructions. In 
1796, Gauss showed that the 17-sided regular polygon is so constructible, the first 
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advance in this area since Euclid's time. Gauss' doctoral thesis of 1799 provided a 
rigorous proof of the Fundamental Theorem of Algebra, which had been stated first 
by Girard in 1629 and then proved imperfectly by d 'Alembert ( 17 46), and later by 
Euler (1749). The theorem (it asserts that a polynomial equation of degree n has 
exactly n complex roots) was always a favorite of Gauss', and he gave, in all, four 
distinct demonstrations of it. The publication of Disquisitiones Arithmeticae in 1801 
at once placed Gauss in the front rank of mathematicians. 

The most extraordinary achievement of Gauss was more in the realm of theo­
retical astronomy than of mathematics. On the opening night of the 19th century, 
January 1, 1801, the Italian astronomer Piazzi discovered the first of the so-called 
minor planets (planetoids or asteroids), later called Ceres. But after the course of 
this newly found body-visible only by telescope-passed the sun, neither Piazzi 
nor any other astronomer could locate it again. Piazzi's observations extended over 
a period of 41 days, during which the orbit swept out an angle of only nine degrees. 
From the scanty data available, Gauss was able to calculate the orbit of Ceres with 
amazing accuracy, and the elusive planet was rediscovered at the end of the year in 
almost exactly the position he had forecasted. This success brought Gauss worldwide 
fame, and led to his appointment as director of Gottingen Observatory. 

By the middle of the 19th century, mathematics had grown into an enormous 
and unwieldy structure, divided into a large number of fields in which only the 
specialist knew his way. Gauss was the last complete mathematician, and it is no 
exaggeration to say that he was in some degree connected with nearly every aspect of 
the subject. His contemporaries regarded him as Princeps Mathematicorum (Prince 
of Mathematicians), on a par with Archimedes and Isaac Newton. This is revealed in 
a small incident: On being asked who was the greatest mathematician in Germany, 
Laplace answered, "Why, Pfaff." When the questioner indicated that he would have 
thought Gauss was, Laplace replied, "Pfaff is by far the greatest in Germany, but 
Gauss is the greatest in all Europe." 

Although Gauss adorned every branch of mathematics, he always held number 
theory in high esteem and affection. He insisted that, "Mathematics is the Queen of 
the Sciences, and the theory of numbers is the Queen of Mathematics." 

4.2 BASIC PROPERTIES OF CONGRUENCE 

In the first chapter of Disquisitiones Arithmeticae, Gauss introduces the concept of 
congruence and the notation that makes it such a powerful technique (he explains that 
he was induced to adopt the symbol = because of the close analogy with algebraic 
equality). According to Gauss, "If a number n measures the difference between two 
numbers a and b, then a and b are said to be congruent with respect ton; if not, 
incongruent." Putting this into the form of a definition, we have Definition 4.1. 

Definition 4.1. Let n be a fixed positive integer. Two integers a and b are said to be 
congruent modulo n, symbolized by 

a= b (modn) 

if n divides the difference a - b; that is, provided that a - b = kn for some integer k. 
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To fix the idea, consider n = 7. It is routine to check that 

3 =24(mod7) -31 = 11 (mod?) - 15 = -64 (mod 7) 

because 3-24 = (-3)7, -31- 11 = (-6)7, and -15- (-64) = 7 · 7. When 
n )'(a- b), we say that a is incongruent to b modulo n, and in this case we write 
a =/= b (mod n). For a simple example: 25 =/= 12 (mod 7), because 7 fails to divide 
25- 12 = 13. 

It is to be noted that any two integers are congruent modulo 1, whereas two 
integers are congruent modulo 2 when they are both even or both odd. Inasmuch as 
congruence modulo 1 is not particularly interesting, the usual practice is to assume 
that n > 1. 

Given an integer a, let q and r be its quotient and remainder upon division by 
n, so that 

a= qn + r O:Sr<n 

Then, by definition of congruence, a= r (mod n). Because there are n choices for 
r, we see that every integer is congruent modulo n to exactly one of the values 
0, 1, 2, ... , n- 1; in particular, a= 0 (mod n) if and only ifnI a. The set of n 
integers 0, 1, 2, ... , n - 1 is called the set of least nonnegative residues modulo n. 

In general, a collection of n integers a1, a2, ... , an is said to form a complete set 
of residues (or a complete system of residues) modulo n if every integer is congruent 
modulo n to one and only one of the ak. To put it another way, a 1, a2, ... , an are 
congruent modulo n to 0, 1, 2, ... , n- 1, taken in some order. For instance, 

-12, -4, 11, 13, 22, 82, 91 

constitute a complete set of residues modulo 7; here, we have 

-12 = 2 - 4 = 3 11 = 4 13 = 6 22 = 1 82 = 5 91 = 0 

all modulo 7. An observation of some importance is that any n integers form a 
complete set of residues modulo n if and only if no two of the integers are congruent 
modulo n. We shall need this fact later. 

Our first theorem provides a useful characterization of congruence modulo n in 
terms of remainders upon division by n. 

Theorem 4.1. For arbitrary integers a and b, a= b (mod n) if and only if a and b 
leave the same nonnegative remainder when divided by n. 

Proof. First take a = b (mod n ), so that a = b + kn for some integer k. Upon division 
by n, b leaves a certain remainder r; that is, b = qn + r, where 0 ::": r < n. Therefore, 

a= b + kn = (qn + r) + kn = (q + k)n + r 

which indicates that a has the same remainder as b. 
On the other hand, suppose we can write a = q1 n + r and b = q2n + r, with the 

same remainder r (0 ::": r < n ). Then 

a- b = (q,n + r)- (q2n + r) = (q, - q2)n 

whence n I a- b. In the language of congruences, we have a= b (mod n). 
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Example 4.1. Because the integers -56 and -11 can be expressed in the form 

-56= (-7)9 + 7 -11 = (-2)9 + 7 

with the same remainder 7, Theorem 4.1 tells us that -56= -11 (mod 9). Going in 
the other direction, the congruence -31 = 11 (mod 7) implies that -31 and 11 have 
the same remainder when divided by 7; this is clear from the relations 

-31 = (-5)7 +4 11=1·7+4 

Congruence may be viewed as a generalized form of equality, in the sense that 
its behavior with respect to addition and multiplication is reminiscent of ordinary 
equality. Some of the elementary properties of equality that carry over to congruences 
appear in the next theorem. 

Theorem 4.2. Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the following 
properties hold: 

(a) a= a (mod n). 
(b) If a= b (mod n), then b =a (mod n). 
(c) If a= b (mod n) and b = c (mod n), then a= c (mod n). 
(d) If a= b (mod n) and c = d (mod n), then a+ c = b + d (mod n) and ac = 

bd (modn). 
(e) If a= b (mod n), then a+ c = b + c (mod n) and ac =be (mod n). 
(f) If a= b (mod n), then ak = bk (mod n) for any positive integer k. 

Proof. For any integer a, we have a- a= 0 · n, so that a= a (mod n). Now if 
a= b (mod n), then a- b = kn for some integer k. Hence, b- a= -(kn) = ( -k)n 
and because -k is an integer, this yields property (b). 

Property (c) is slightly less obvious: Suppose that a= b (mod n) and also b = 
c (mod n ). Then there exist integers h and k satisfying a - b = hn and b - c = kn. It 
follows that 

a - c = (a -b)+ (b- c) = hn + kn = (h + k)n 

which is a = c (mod n) in congruence notation. 
In the same vein, if a= b (mod n) and c = d (mod n), then we are assured that 

a- b = k1n and c- d = k2n for some choice of k1 and k2• Adding these equations, 
we obtain 

(a+ c)- (b +d)= (a- b)+ (c- d) 

=:= k,n + kzn = (k, + kz)n 

or, as a congruence statement, a + c = b + d (mod n ). As regards the second assertion 
of property (d), note that 

ac = (b + k,n)(d + kzn) = bd + (bk2 + dk, + k,k2n)n 

Because bk2 + dk1 + k1k2n is an integer, this says that ac- bd is divisible by n, 
whence ac = bd (mod n ). 

The proof of property (e) is covered by (d) and the fact that c = c (mod n ). Finally, 
we obtain property (f) by making an induction argument. The statement certainly 
holds fork= 1, and we will assume it is true for some fixed k. From (d), we know 
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that a= b (mod n) and ak = bk (mod n) together imply that aak = bbk (mod n), or 
equivalently ak+1 = bk+1 (mod n). This is the form the statement should take fork+ 1, 
and so the induction step is complete. 

Before going further, we should illustrate that congruences can be a great help 
in carrying out certain types of computations. 

Example 4.2. Let us endeavor to show that 41 divides 220 - 1. We begin by noting 
that 25 = -9 (mod 41), whence (25)4 = ( -9)4 (mod 41) by Theorem 4.2(f); in other 
words, 220 = 81 · 81 (mod 41). But 81 = -1 (mod 41), and so 81 · 81 = 1 (mod 41). 
Using parts (b) and (e) of Theorem 4.2, we finally arrive at 

220 - 1 = 81 . 81 - 1 = 1- 1 = 0 (mod 41) 

Thus, 411220 - 1, as desired. 

Example 4.3. For another example in the same spirit, suppose that we are asked to 
find the remainder obtained upon dividing the sum 

1! + 2! + 3! + 4! + ... + 99! + 100! 

by 12. Without the aid of congruences this would be an awesome calculation. The 
observation that starts us off is that 4! = 24 = 0 (mod 12); thus, fork :::: 4, 

k! = 4! · 5 · 6 · · · k = 0 · 5 · 6 · · · k = 0 (mod 12) 

In this way, we find that 

1! + 2! + 3! + 4! + ... + 100! 

= 1! + 2! + 3! + 0 + · · · + 0 = 9 (mod 12) 

Accordingly, the sum in question leaves a remainder of 9 when divided by 12. 

In Theorem 4.1 we saw that if a= b (mod n), then ca = cb (mod n) for any 
integer c. The converse, however, fails to hold. As an example, perhaps as simple 
as any, note that 2 · 4 = 2 · 1 (mod 6), whereas 4 =/= 1 (mod 6). In brief: One cannot 
unrestrictedly cancel a common factor in the arithmetic of congruences. 

With suitable precautions, cancellation can be allowed; one step in this direction, 
and an important one, is provided by the following theorem. 

Theorem 4.3. If ca = cb (mod n), then a= b (mod n/d), where d = gcd(c, n). 

Proof. By hypothesis, we can write 

c(a - b) = ca - cb = kn 

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime integers 
r and s satisfying c = dr, n = ds. When these values are substituted in the displayed 
equation and the common factor d canceled, the net result is 

r(a-b)=ks 

Hence, s I r(a- b) and gcd(r, s) = 1. Euclid's lemma yields s I a- b, which may be 
recast as a= b (mods); in other words, a= b (mod n/d). 
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Theorem 4.3 gets its maximum force when the requirement that gcd(c, n) = 1 is 
added, for then the cancellation may be accomplished without a change in modulus. 

Corollary 1. If ca = cb (mod n) and gcd(c, n) = 1, then a= b (mod n). 

We take a moment to record a special case of Corollary 1 that we shall have 
frequent occasion to use, namely, Corollary 2. 

Corollary 2. If ca = cb (mod p) and p 1 c, where p is a prime number, then 
a= b (mod p). 

Proof. The conditions p 1 c and p a prime imply that gcd(c, p) = 1. 

Example 4.4. Consider the congruence 33 = 15 (mod 9) or, if one prefers, 3 · 11 = 
3 · 5 (mod 9). Because gcd(3 , 9) = 3, Theorem 4.3 leads to the conclusion that 11 = 
5 (mod 3). A further illustration is given by the congruence -35 = 45 (mod 8), which 
is the same as 5 · (-7) = 5 · 9 (mod 8). The integers 5 and 8 being relatively prime, 
we may cancel the factor 5 to obtain a correct congruence -7 = 9 (mod 8). 

Let us call attention to the fact that, in Theorem 4.3, it is unnecessary to stipulate 
that c ¢. 0 (mod n ). Indeed, if c = 0 (mod n ), then gcd( c , n) = n and the conclusion 
of the theorem would state that a = b (mod 1 ); but, as we remarked earlier, this holds 
trivially for all integers a and b. 

There is another curious situation that can arise with congruences: The product 
of two integers, neither of which is congruent to zero, may tum out to be congruent to 
zero. Forinstance, 4 · 3 = 0 (mod 12), but4 ¢. 0 (mod 12) and 3 ¢. 0 (mod 12). It is a 
simple matter to show that if ab = 0 (mod n) and gcd(a , n) = 1, then b = 0 (mod n ): 
Corollary 1 permits us legitimately to cancel the factor a from both sides of the 
congruence ab = a · 0 (mod n ). A variation on this is that when ab = 0 (mod p ), 
with p a prime, then either a = 0 (mod p) or b = 0 (mod p ). 

PROBLEMS 4.2 

1. Prove each of the following assertions: 
(a) If a = b (mod n) and mIn, then a= b (mod m). 
(b) If a= b (mod n) and c > 0, then ca = cb (mod en). 
(c) If a = b (mod n) and the integers a, b, n are all divisible by d > 0, then afd = 

bfd (mod nfd). 
2. Give an example to show that a 2 = b2 (mod n) need not imply that a= b 

(modn). 
3. If a= b (mod n), prove that gcd(a, n) = gcd(b, n). 
4. (a) Find the remainders when 250 and 4165 are divided by 7. 

(b) What is the remainder when the following sum is divided by 4? 

15 +25 +35 + ... +995 + 1005 

5. Prove that the integer 53 103 + 10353 is divisible by 39, and that 111333 + 333 111 is divis­
ible by 7. 
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6. For n :::::: 1, use congruence theory to establish each of the following divisibility state­
ments: 
(a) 7152n + 3 · 25n-2 . 

(b) 1313n+2 + 42n+l. 
(c) 27125n+l + sn+Z. 

(d) 4316n+2 + 72n+l. 
7. For n :::::: 1, show that 

(-13t+' = (-13t + (-13t-1 (mod 181) 

[Hint: Notice that ( -13)2 = -13 + 1 (mod 181); use induction on n.] 
8. Prove the assertions below: 

(a) If a is an odd integer, then a 2 = 1 (mod 8). 
(b) For any integer a, a3 = 0, 1, or 6 (mod 7). 
(c) For any integer a, a4 = 0 or 1 (mod 5). 
(d) If the integer a is not divisible by 2 or 3, then a 2 = 1 (mod 24 ). 

9. If p is a prime satisfying n < p < 2n, show that 

( 2:) =O(modp) 

10. If a1, a2, ... , an is a complete set of residues modulo n and gcd(a, n) = 1, prove that 
aa,, aa2 , ••• , aan is also a complete set of residues modulo n. 
[Hint: It suffices to show that the numbers in question are incongruent modulo 
n.] 

11. Verify that 0, 1, 2, 22, 23 , ... , 29 form a complete set of residues modulo 11, but that 
0, 12, 22, 32, ... , 102 do not. 

12. Prove the following statements: 
(a) If gcd(a, n) = 1, then the integers 

c, c +a, c + 2a, c + 3a, ... , c + (n - l)a 

form a complete set of residues modulo n for any c. 
(b) Any n consecutive integers form a complete set of residues modulo n. 

[Hint: Use part (a).] 
(c) The product of any set of n consecutive integers is divisible by n. 

13. Verify that if a = b (mod n 1) and a = b (mod n2), then a = b (mod n ), where the integer 
n = lcm(n,, n2). Hence, whenever n, and n2 are relatively prime, a= b (mod n1n2). 

14. Give an example to show that ak = bk (mod n) and k = j (mod n) need not imply that 
aj = bj (mod n). 

15. Establish that if a is an odd integer, then for any n :::::: 1 

a 2" = 1 (mod 2n+2) 

[Hint: Proceed by induction on n.] 
16. Use the theory of congruences to verify that 

891244 - 1 and 

17. Prove that whenever ab = cd (mod n) and b = d (mod n), with gcd(b, n) = 1, then 
a= c (modn). 

18. If a = b (mod n 1) and a = c (mod n2), prove that b = c (mod n ), where the integer n = 
gcd(n, , n2). 
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4.3 BINARY AND DECIMAL REPRESENTATIONS OF INTEGERS 

One of the more interesting applications of congruence theory involves finding 
special criteria under which a given integer is divisible by another integer. At their 
heart, these divisibility tests depend on the notational system used to assign "names" 
to integers and, more particularly, to the fact that 10 is taken as the base for our number 
system. Let us, therefore, start by showing that, given an integer b > 1, any positive 
integer N can be written uniquely in terms of powers of b as 

N = ambm + am-lbm-l + · · · + a2b2 + a1b + ao 

where the coefficients ak can take on the b different values 0, 1, 2, ... , b- 1. For 
the Division Algorithm yields integers q1 and a0 satisfying 

If q1 2:: b, we can divide once more, obtaining 

Now substitute for q1 in the earlier equation to get 

N = (q2b + a1)b + ao = q2b2 + a1b + ao 

As long as q2 2:: b, we can continue in the same fashion. Going one more step: 
q2 = q3b + a2, where 0 _:=::: a2 < b; hence 

N = q3b3 + a2b2 + a1b + ao 

Because N > q1 > q2 > · · · 2:: 0 is a strictly decreasing sequence of integers, this 
process must eventually terminate, say, at the (m - 1)th stage, where 

and 0 _::::: qm <b. Setting am = qm, we reach the representation 

N = ambm + am-lbm-l + · · · + a1b + ao 

which was our aim. 
To show uniqueness, let us suppose that N has two distinct representations, say, 

N = ambm + ... +alb+ ao = Cmbm + ... + clb +Co 

with 0 _::::: ai < b for each i and 0 _::::: cj < b for each j (we can use the same m by 
simply adding terms with coefficients ai = 0 or cj = 0, if necessary). Subtracting 
the second representation from the first gives the equation 

0 = dmbm + · · · + d1b +do 

where d; = ai - c; fori = 0, 1, ... , m. Because the two representations for N are 
assumed to be different, we must have d; =j=. 0 for some value of i. Take k to be the 
smallest subscript for which dk =j=. 0. Then 

0 = dmbm + · · · + dk+lbk+l + dkbk 

and so, after dividing by bk, 

dk = -b(dmbm-k-l + · · · + dk+l) 
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This tells us that b I dk. Now the inequalities 0 _::::: ak < band 0 _::::: ck < b lead us to 
-b < ak- ck < b, or I dk I < b. The only way of reconciling the conditions b I dk 
and I dk I < b is to have dk = 0, which is impossible. From this contradiction, we 
conclude that the representation of N is unique. 

The essential feature in all of this is that the integer N is completely determined 
by the ordered array am, am_,, ... , a,, ao of coefficients, with the plus signs and the 
powers of b being superfluous. Thus, the number 

N = ambm +am-Ibm-!+···+ a2b2 + a,b + ao 

may be replaced by the simpler symbol 

(the right-hand side is not to be interpreted as a product, but only as an abbreviation 
for N). We call this the base b place-value notation for N. 

Small values of b give rise to lengthy representation of numbers, but have the 
advantage of requiring fewer choices for coefficients. The simplest case occurs when 
the base b = 2, and the resulting system of enumeration is called the binary number 
system (from the Latin binarius, two). The fact that when a number is written in the 
binary system only the integers 0 and 1 can appear as coefficients means that every 
positive integer is expressible in exactly one way as a sum of distinct powers of 2. 
For example, the integer 105 can be written as 

105 = 1 . 26 + 1 . 25 + 0 . 24 + 1 . 23 + 0 . 22 + 0 . 2 + 1 

= 26 + 25 + 23 + 1 

or, in abbreviated form, 

105 = (1101001)2 

In the other direction, ( 100 1111 h translates into 

1 . 26 + 0 . 25 + 0 . 24 + 1 . 23 + 1 . 22 + 1 . 2 + 1 = 79 

The binary system is most convenient for use in modem electronic computing ma­
chines, because binary numbers are represented by strings of zeros and ones; 0 and 
1 can be expressed in the machine by a switch (or a similar electronic device) being 
either on or off. 

We shall frequently wish to calculate the value of ak (mod n) when k is large. 
Is there a more efficient way of obtaining the least positive residue than multiplying 
a by itself k times before reducing modulo n? One such procedure, called the binary 
exponential algorithm, relies on successive squarings, with a reduction modulo n 
after each squaring. More specifically, the exponent k is written in binary form, as 
k = (amam-! ... a2a1aoh, and the values a2j (mod n) are calculated for the powers 
of 2, which correspond to the 1 's in the binary representation. These partial results 
are then multiplied together to give the final answer. 

An illustration should make this process clear. 
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Example 4.5. To calculate suo (mod 131), first note that the exponent 110 can be 
expressed in binary form as 

110 = 64 + 32 + 8 + 4 + 2 = (110110)2 

Thus, we obtain the powers 52; (mod 131) for 0.:::; j .:::; 6 by repeatedly squaring while 
at each stage reducing each result modulo 131: 

52 = 25 (mod 131) 
54 = 101 (mod 131) 
58 = 114 (mod 131) 

516 = 27 (mod 131) 
532 = 74 (mod 131) 
564 = 105 (mod 131) 

When the appropriate partial results-those corresponding to the 1 's in the binary 
expansion of 110---are multiplied, we see that 

5110 = 564+32+8+4+2 
= 564 . 532 . ss . 54 . 52 

= 105 · 74 · 114 · 101-25 = 60 (mod 131) 

As a minor variation of the procedure, one might calculate, modulo 131, the powers 
5, 52, 53, 56,512,524 ,548 ,596 to arrive at 

5llO = 596 · 512 ·52 :=: 41 · 117 · 25 :=: 60 (mod 131) 

which would require two fewer multiplications. 

We ordinarily record numbers in the decimal system of notation, where b = 10, 
omitting the 10-subscript that specifies the base. For instance, the symbol 1492 
stands for the more awkward expression 

1-103 +4-102 +9-10+2 

The integers 1, 4, 9, and 2 are called the digits of the given number, 1 being the 
thousands digit, 4 the hundreds digit, 9 the tens digit, and 2 the units digit. In 
technical language we refer to the representation of the positive integers as sums of 
powers of 10, with coefficients at most 9, as their decimal representation (from the 
Latin decem, ten). 

We are about ready to derive criteria for determining whether an integer is 
divisible by 9 or 11, without performing the actual division. For this, we need a result 
having to do with congruences involving polynomials with integral coefficients. 

Theorem 4.4. Let P(x) = :L:;=O ckxk be a polynomial function of x with integral 
coefficients ck. If a= b (mod n), then P(a) = P(b) (mod n). 

Proof. Because a = b (mod n ), part (f) of Theorem 4.2 can be applied to give 
ak = bk (mod n) fork= 0, 1, ... , m. Therefore, 

ckak = ckbk (mod n) 

for all such k. Adding these m + 1 congruences, we conclude that 
m m 

L ckak = L ckbk (mod n) 
k=O k=O 

or, in different notation, P(a) = P(b) (mod n). 
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If P(x) is a polynomial with integral coefficients, we say that a is a solution of 
the congruence P(x) = 0 (mod n) if P(a) = 0 (mod n). 

Corollary. If a is a solution of P(x) = 0 (mod n) and a= b (mod n), then b also is a 
solution. 

Proof. From the last theorem, it is known that P(a) = P(b) (mod n). Hence, if a is a 
solution of P(x) = 0 (mod n), then P(b) = P(a) = 0 (mod n), making b a solution. 

One divisibility test that we have in mind is this. A positive integer is divisible 
by 9 if and only if the sum of the digits in its decimal representation is divisible by 9. 

Theorem 4.5. Let N =am 10m+ am_, 10m-!+···+ a,10 + ao be the decimal ex­
pansion of the positive integer N, 0::::: ak < 10, and letS= ao +a, +···+am. Then 
91 N if and only if 91 S. 

Proof. Consider P(x) = L:;=O akxk, a polynomial with integral coefficients. The key 
observation is that 10 = 1 (mod 9), whence by Theorem 4.4, P(10) = P(l) (mod 9). 
But P(10) = N and P(1) = ao +a, +···+am = S, so that N = S (mod 9). It fol­
lows that N = 0 (mod 9) if and only if S = 0 (mod 9), which is what we wanted to 
prove. 

Theorem 4.4 also serves as the basis for a well-known test for divisibility by 11: 
an integer is divisible by 11 if and only if the alternating sum of its digits is divisible 
by 11. We state this more precisely by Theorem 4.6. 

Theorem 4.6. Let N =am 10m+ am_,10m-i + · · · + a,10 + ao be the decimal ex­
pansion of the positive integer N, 0 ::::: ak < 10, and let T = a0 - a1 + a2 - · • · 

+ ( -l)mam. Then 111 N if and only if 111 T. 

Proof. As in the proof of Theorem 4.5, put P(x) = L:;=O akxk. Because 10 = -1 
(mod 11), we get P(10) = P( -1) (mod 11). But P(10) = N, whereas P( -1) = 
ao -a, + a2 - · · · + ( -l)mam = T, so that N = T (mod 11). The implication is that 
either both N and T are divisible by 11 or neither is divisible by 11. 

Example 4.6. To see an illustration of the last two results, take the integer N = 
1, 571,724. Because the sum 

1 + 5 + 7 + 1 + 7 + 2 + 4 = 27 

is divisible by 9, Theorem 4.5 guarantees that 9 divides N. It also can be divided by 
11; for, the alternating sum 

4-2+7-1+7-5+1=11 

is divisible by 11. 

Congruence theory is frequently used to append an extra check digit to iden­
tification numbers, in order to recognize transmission errors or forgeries. Personal 
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identification numbers of some kind appear on passports, credit cards, bank accounts, 
and a variety of other settings. 

Some banks use an eight-digit identification number a1a2 •.. a8 together with 
a final check digit a9 • The check digit is usually obtained by multiplying the digits 
ai(l _:::: i _:::: 8) by certain "weights" and calculating the sum of the weighted products 
modulo 10. For instance, the check digit might be chosen to satisfy 

a9 = 7a, + 3a2 + 9a3 + 7a4 + 3as + 9a6 + 7a7 + 3as (mod 10) 

The identification number 81504216 would then have check digit 

a9 = 7 · 8 + 3 · 1 + 9 · 5 + 7 · 0 + 3 · 4 + 9 · 2 + 7 · 1 + 3 · 6 = 9 (mod 10) 

so that 815042169 would be printed on the check. 
This weighting scheme for assigning check digits detects any single-digit error 

in the identification number. For suppose that the digit ai is replaced by a different 
a;. By the manner in which the check digit is calculated, the difference between the 
correct a9 and the new a~ is 

(mod 10) 

wherekis7,3,or9dependingonthepositionofa;.Becausek(ai- a;>¢. O(mod 10), 
it follows thata9 ::j:. a~ and the erroris apparent. Thus, if the valid number 81504216 
were incorrectly entered as 81504316 into a computer programmed to calculate 
check digits, an 8 would come up rather than the expected 9. 

The modulo 10 approach is not entirely effective, for it does not always detect 
the common error of transposing distinct adjacent entries a and b within the string 
of digits. To illustrate: the identification numbers 81504216 and 81504261 have 
the same check digit 9 when our example weights are used. (The problem occurs 
when Ia- hi = 5.) More sophisticated methods are available, with larger moduli 
and different weights, that would prevent this possible error. 

PROBLEMS 4.3 

1. Use the binary exponentiation algorithm to compute both 1953 (mod 503) and 14147 

(mod 1537). 
2. Prove the following statements: 

(a) For any integer a, the units digit of a 2 is 0, 1, 4, 5, 6, or 9. 
(b) Any one ofthe integers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 can occur as the units digit of a3 • 

(c) For any integer a, the units digit of a4 is 0, 1, 5, or 6. 
(d) The units digit of a triangular number is 0, 1, 3, 5, 6, or 8. 

3. Find the last two digits of the number 999 • 

[Hint: 99 = 9 (mod 10); hence, 999 = 99+10k; now use the fact that 99 = 89(mod 
100).] 

4. Without performing the divisions, determine whether the integers 176,521,221 and 
149,235,678 are divisible by 9 or 11. 

5. (a) Obtain the following generalization of Theorem 4.6: If the integer N is represented 
in the base b by 

N = ambm + · · · + azb2 + a,b + ao 0 ~ ak ~ b- 1 

then b - 1 I N if and only if b - 11 (am + · · · + az +a, + ao). 
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(b) Give criteria for the divisibility of N by 3 and 8 that depend on the digits of N when 
written in the base 9. 

(c) Is the integer (447836)9 divisible by 3 and 8? 
6. Working modulo 9 or 11, find the missing digits in the calculations below: 

(a) 51840 · 273581 = 1418243x040. 
(b) 2x99561 = [3(523 + x)]2• 

(c) 2784x = x · 5569. 
(d) 512 · 1x53125 = 1000000000. 

7. Establish the following divisibility criteria: 
(a) An integer is divisible by 2 if and only if its units digit is 0, 2, 4, 6, or 8. 
(b) An integer is divisible by 3 if and only if the sum of its digits is divisible by 3. 
(c) An integer is divisible by 4 if and only if the number formed by its tens and units 

digits is divisible by 4. 
[Hint: lOk = 0 (mod 4) fork :::::: 2.] 

(d) An integer is divisible by 5 if and only if its units digit is 0 or 5. 
8. For any integer a, show that a 2 - a + 7 ends in one of the digits 3, 7, or 9. 
9. Find the remainder when 44444444 is divided by 9. 

[Hint: Observe that 23 = -1 (mod 9).] 
10. Prove that no integer whose digits add up to 15 can be a square or a cube. 

[Hint: For any a, a3 = 0, 1, or 8 (mod 9).] 
11. Assuming that 495 divides 273x49y5, obtain the digits x andy. 
12. Determine the last three digits of the number 7999 . 

[Hint: 74n = (1 + 400)n = 1 + 400n (mod 1000).] 
13. If tn denotes the nth triangular number, show that tn+Zk = tn (mod k ); hence, tn and tn+ZO 

must have the same last digit. 
14. For any n :::::: 1, prove that there exists a prime with at least n of its digits equal to 0. 

[Hint: Consider the arithmetic progression wn+l k + 1 fork = 1, 2, .... ] 
15. Find the values of n :::::: 1 for which 1! + 2! + 3! + · · · + n! is a perfect square. 

[Hint: Problem 2(a).] 
16. Show that 2n divides an integer N if and only if 2n divides the number made up of the 

last n digits of N. 
[Hint: 1ok = 2k5k = 0 (mod 2n) fork :=:::: n.] 

17. Let N = am10"' + · · · + azl02 + a1l0 + ao, where 0 .:5 ak .:59, be the decimal expan­
sion of a positive integer N. 
(a) Prove that 7, 11, and 13 all divide N if and only if 7, 11, and 13 divide the integer 

M = (lOOaz + l0a1 + ao)- (lOOas + l0a4 + a3) 

+ (lOOas + 10a7 + a6)- · · · 

[Hint: If n is even, then 103n = 1, 103n+l = 10, 103n+2 = 100 (mod 1001); if n is 
odd, then 103n = -1, 103n+l = -10, 103n+Z = -100 (mod 1001).] 

(b) Prove that 6 divides N if and only if 6 divides the integer 

M = ao +4al +4az + · · · +4am 

18. Without performing the divisions, determine whether the integer 1010908899 is divisible 
by 7, 11, and 13. 

19. (a) Given an integer N, let M be the integer formed by reversing the order of the digits 
of N (for example, if N = 6923, then M = 3296). Verify that N - M is divisible 
by9. 
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(b) A palindrome is a number that reads the same backwards as forwards (for instance, 
373 and 521125 are palindromes). Prove that any palindrome with an even number 
of digits is divisible by 11. 

20. Given a repunit Rn, show that 
(a) 91 Rn if and only if 91 n. 
(b) 111 Rn if and only if n is even. 

21. Factor the repunit R6 = 111111 into a product of primes. 
[Hint: Problem 17(a).] 

22. Explain why the following curious calculations hold: 

[Hint: Show that 

1·9+ 2 = 11 

12· 9+ 3 = 111 

123.9 + 4 = 1111 

1234.9 + 5 = 11111 

12345.9 + 6 = 111111 

123456.9 + 7 = 1111111 

1234567.9 + 8 = 11111111 

12345678 . 9 + 9 = 111111111 

123456789.9 + 10 = 1111111111 

(lon-1 + 2. wn-2 + 3. wn-3 + ... + n)(lO- 1) 

wn+i- 1 
+(n + 1) = 9 .] 

23. An old and somewhat illegible invoice shows that 72 canned hams were purchased for 
$x 67.9y. Find the missing digits. 

24. lf792 divides the integer 13xy 45z, find the digits x, y, and z. 
[Hint: By Problem 17, 8145z.] 

25. For any prime p > 3 prove that 13 divides 102P - lQP + 1. 
26. Consider the eight-digit bank identification number a 1a2 ... a8, which is followed by a 

ninth check digit a9 chosen to satisfy the congruence 

a9 = 7a, + 3a2 + 9a3 + 7a4 + 3as + 9a6 + 7a7 + 3as (mod 10) 

(a) Obtain the check digits that should be appended to the two numbers 55382006 and 
81372439. 

(b) The bank identification number 237 a4 18538 has an illegible fourth digit. Determine 
the value of the obscured digit. 

27. The International Standard Book Number (ISBN) used in many libraries consists of nine 
digits a 1a2 ... a9 followed by a tenth check digit a10 , which satisfies 

9 

aw = L kak (mod 11) 
k=i 

Determine whether each of the ISBN s below is correct: 
(a) 0-07-232569-0 (United States). 
(b) 91-7643-497-5 (Sweden). 
(c) 1-56947-303-10 (England). 

28. When printing the ISBN a 1a2 ... a9 , two unequal digits were transposed. Show that the 
check digits detected this error. 
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4.4 LINEAR CONGRUENCES AND THE CHINESE 
REMAINDER THEOREM 

This is a convenient place in our development of number theory at which to inves­
tigate the theory of linear congruences: An equation of the form ax= b (mod n) 
is called a linear congruence, and by a solution of such an equation we mean an 
integer xo for which axo = b (mod n). By definition, axo = b (mod n) if and only 
if n I axo - b or, what amounts to the same thing, if and only if axo - b = nyo for 
some integer yo. Thus, the problem of finding all integers that will satisfy the lin­
ear congruence ax = b (mod n) is identical with that of obtaining all solutions of 
the linear Diophantine equation ax - ny =b. This allows us to bring the results of 
Chapter 2 into play. 

It is convenient to treat two solutions of ax = b (mod n) that are congruent 
modulo n as being "equal" even though they are not equal in the usual sense. For 
instance, x = 3 and x = -9 both satisfy the congruence 3x = 9 (mod 12); because 
3 = -9 (mod 12), they are not counted as different solutions. In short: When we refer 
to the number of solutions of ax = b (mod n ), we mean the number of incongruent 
integers satisfying this congruence. 

With these remarks in mind, the principal result is easy to state. 

Theorem4.7. The linear congruence ax = b (mod n) has asolutionifandonlyif d I b, 
where d = gcd(a, n). If d I b, then it has d mutually incongruent solutions modulo n. 

Proof. We already have observed that the given congruence is equivalent to the linear 
Diophantine equation ax- ny =b. From Theorem 2.9, it is known that the latter 
equation can be solved if and only if d I b; moreover, if it is solvable and x0, y0 is one 
specific solution, then any other solution has the form 

a 
y=yo+·i 

for some choice of t. 
Among the various integers satisfying the first of these formulas, consider those 

that occur when t takes on the successive values t = 0, 1, 2, ... , d- 1: 

n 2n (d- l)n 
xo, xo + d, xo + d, ... , xo + d 

We claim that these integers are incongruent modulo n, and all other such integers x 
are congruent to some one of them. If it happened that 

n n 
xo + dt1 = xo + dt2 (mod n) 

where 0 ::": t1 < t2 ::": d- 1, then we would have 

n n 
-t1 = -t2 (mod n) 
d d 

Now gcd(n/d, n) = njd, and therefore by Theorem 4.3 the factor n/d could be can­
celed to arrive at the congruence 

t1 = t2 (mod d) 



THE THEORY OF CONGRUENCES 77 

which is to say that d I t2 - t1• But this is impossible in view of the inequality 
0 < t2- t, <d. 

It remains to argue that any other solution x0 + (n/d)t is congruent modulo n to 
one of the d integers listed above. The Division Algorithm permits us to write t as 
t = q d + r, where 0 :::; r :::; d - 1. Hence 

n n 
xo + dt = xo + d(qd + r) 

n 
=xo+nq + dr 

n = xo + d r (mod n) 

with xo + (n/d)r being one of our d selected solutions. This ends the proof. 

The argument that we gave in Theorem 4.7 brings out a point worth stating ex­
plicitly: If xo is any solution of ax = b (mod n ), then the d = gcd(a , n) incongruent 
solutions are given by 

xo, xo + ~· xo + 2 (~), ... , xo + (d- 1) (~) 
For the reader's convenience, let us also record the form Theorem 4.7 takes in 

the special case in which a and n are assumed to be relatively prime. 

Corollary. If gcd( a , n) = 1, then the linear congruence ax = b (mod n) has a unique 
solution modulo n. 

Given relatively prime integers a and n, the congruence ax = 1 (mod n) has a 
unique solution. This solution is sometimes called the (multiplicative) inverse of a 
modulo n. 

We now pause to look at two concrete examples. 

Example 4.7. First consider the linear congruence 18x = 30 (mod 42). Because 
gcd(18, 42) = 6 and 6 surely divides 30, Theorem 4.7 guarantees the existence of 
exactly six solutions, which are incongruent modulo 42. By inspection, one solution 
is found to be x = 4. Our analysis tells us that the six solutions are as follows: 

x = 4 + (42/6)t = 4 + 7t (mod 42) t = 0, 1, ... , 5 

or, plainly enumerated, 

x = 4, 11, 18, 25, 32, 39 (mod 42) 

Example 4.8. Let us solve the linear congruence 9x = 21 (mod 30). At the outset, 
because gcd(9, 30) = 3 and 3121, we know that there must be three incongruent 
solutions. 

One way to find these solutions is to divide the given congruence through by 
3, thereby replacing it by the equivalent congruence 3x = 7 (mod 10). The relative 
primeness of 3 and 10 implies that the latter congruence admits a unique solution 
modulo 10. Although it is not the most efficient method, we could test the integers 



78 ELEMENTARY NUMBER THEORY 

0, 1, 2, ... ,9 in tum until the solution is obtained. A better way is this: Multiply both 
sides of the congruence 3x = 7 (mod 10) by 7 to get 

2lx = 49 (mod 10) 

which reduces to x = 9 (mod 1 0). (This simplification is no accident, for the multiples 
0 · 3, 1 · 3, 2 · 3, ... , 9 · 3 form a complete set of residues modulo 10; hence, one 
of them is necessarily congruent to 1 modulo 10.) But the original congruence was 
given modulo 30, so that its incongruent solutions are sought among the integers 0, 1, 
2, ... , 29. Taking t = 0, 1, 2, in the formula 

x=9+10t 

we obtain 9, 19, 29, whence 

x = 9 (mod 30) x = 19 (mod 30) x = 29 (mod 30) 

are the required three solutions of 9x = 21 (mod 30). 
A different approach to the problem is to use the method that is suggested in the 

proof of Theorem 4. 7. Because the congruence 9x = 21 (mod 30) is equivalent to the 
linear Diophantine equation 

9x- 30y = 21 

we begin by expressing 3 = gcd(9 , 30) as a linear combination of 9 and 30. It is found, 
either by inspection or by using the Euclidean Algorithm, that 3 = 9( -3) + 30 · 1, so 
that 

21 = 7. 3 = 9(-21)- 30(-7) 

Thus, x = -21, y = -7 satisfy the Diophantine equation and, in consequence, all 
solutions of the congruence in question are to be found from the formula 

x = -21 + (30j3)t = -21 + lOt 

The integers x = -21 + 1 Ot, where t = 0, 1, 2, are incongruent modulo 30 (but all are 
congruent modulo 10); thus, we end up with the incongruent solutions 

x = -21 (mod 30) x = -11 (mod 30) x = -1 (mod 30) 

or, if one prefers positive numbers, x = 9, 19, 29 (mod 30). 

Having considered a single linear congruence, it is natural to tum to the problem 
of solving a system of simultaneous linear congruences: 

a,x = b, (mod m,), a2x = b2 (mod m2), ... , arx = br (mod mr) 

We shall assume that the moduli mk are relatively prime in pairs. Evidently, the 
system will admit no solution unless each individual congruence is solvable; that 
is, unless dk I bk for each k, where dk = gcd(ak, mk)· When these conditions are 
satisfied, the factor dk can be canceled in the kth congruence to produce a new 
system having the same set of solutions as the original one: 

a~x = b~ (mod n,), a~x = b~ (mod n2), ... , a;x = b~ (mod nr) 
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where nk = mk/ dk and gcd(n; , n 1) = 1 fori =j:. j; in addition, gcd(a; , n;) = 1. The 
solutions of the individual congruences assume the form 

X := C! (mod iz,), X := C2 (mod n2), ... , X := Cr (mod nr) 

Thus, the problem is reduced to one of finding a simultaneous solution of a system 
of congruences of this simpler type. 

The kind of problem that can be solved by simultaneous congruences has a 
long history, appearing in the Chinese literature as early as the 1st century A.D. 

Sun-Tsu asked: Find a number that leaves the remainders 2, 3, 2 when divided by 
3, 5, 7, respectively. (Such mathematical puzzles are by no means confined to a single 
cultural sphere; indeed, the same problem occurs in the Introductio Arithmeticae 
of the Greek mathematician Nicomachus, circa 100 A.D.) In honor of their early 
contributions, the rule for obtaining a solution usually goes by the name of the 
Chinese Remainder Theorem. 

Theorem4.8 Chinese Remainder Theorem. Letn1, n2, ... , n, be positive integers 
such that gcd(ni , n j) = 1 for i =f. j. Then the system of linear congruences 

x = a 1 (mod n1) 

x = a2 (mod n2) 

x = a, (mod n,) 

has a simultaneous solution, which is unique modulo the integer n 1n2 · · · n,. 

Proof. We start by forming the product n = n 1n2 · · · n,. For each k = 1, 2, ... , r, let 
n 

Nk = - = n, · · · nk-lnk+l · · · n, 
nk 

In words, Nk is the product of all the integers ni with the factor nk omitted. By hy­
pothesis, the ni are relatively prime in pairs, so that gcd(Nk , nk) = 1. According to the 
theory of a single linear congruence, it is therefore possible to solve the congruence 
Nkx = 1 (mod nk); call the unique solution Xk· Our aim is to prove that the integer 

x = a,N,x, +a2N2x2 + · · · +a,N,x, 

is a simultaneous solution of the given system. 
First, observe that Ni = 0 (mod nk) for i =I= k, because nk I Ni in this case. The 

result is 

x =a, N,x, + · · · + a,N,x, = akNkXk (mod nk) 

But the integer Xk was chosen to satisfy the congruence Nkx = 1 (mod nk), which 
forces 

x = ak · 1 = ak (mod nk) 

This shows that a solution to the given system of congruences exists. 
As for the uniqueness assertion, suppose that x' is any other integer that satisfies 

these congruences. Then 

k = 1, 2, ... , r 
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and so nk I i- x' for each value of k. Because gcd(ni, nj) = 1, Corollary 2 to 
Theorem 2.4 supplies us with the crucial point that n1n2 · · · n, I i- x'; hence 
i = x' (mod n). With this, the Chinese Remainder Theorem is proven. 

Example 4.9. The problem posed by Sun-Tsu corresponds to the system of three 
congruences 

x = 2 (mod 3) 

x = 3 (mod 5) 

x = 2 (mod 7) 

In the notation of Theorem 4.8, we have n = 3 · 5 · 7 = 105 and 
n n n 

N1 = 3" = 35 Nz =- = 21 
5 

N3 =- = 15 
7 

Now the linear congruences 

35x = 1 (mod 3) 21x = 1 (mod 5) 15x = 1 (mod 7) 

are satisfied by x1 = 2, x2 = 1, x3 = 1, respectively. Thus, a solution of the system is 
given by 

X = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 = 233 

Modulo 105, we get the unique solution x = 233 = 23 (mod 105). 

Example 4.10. For a second illustration, let us solve the linear congruence 

17x = 9 (mod 276) 

Because 276 = 3 · 4 · 23, this is equivalent to finding a solution for the system of 
congruences 

17x = 9 (mod 3) 

17x = 9 (mod 4) 

17x = 9 (mod 23) 

or x = 0 (mod 3) 

x=1(mod4) 

17x = 9 (mod 23) 

Note that if x = 0 (mod 3), then x = 3k for any integer k. We substitute into the second 
congruence of the system and obtain 

3k = 1 (mod4) 

Multiplication of both sides of this congruence by 3 gives us 

k = 9k = 3 (mod 4) 

so that k = 3 + 4 j, where j is an integer. Then 

X= 3(3 + 4j) = 9 + 12j 

For x to satisfy the last congruence, we must have 

17(9 + 12j) = 9 (mod 23) 

or204j = -144 (mod 23), which reduces to 3j = 6 (mod 23); in consequence, j = 2 
(mod 23). This yields j = 2 + 23t, with t an integer, whence 

X = 9 + 12(2 + 23t) = 33 + 276t 
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All in all, x = 33 (mod 276) provides a solution to the system of congruences and, in 
tum, a solution to 17x = 9 (mod 276). 

We should say a few words about linear congruences in two variables; that is, 
congruences of the form 

ax + by = e (mod n) 

In analogy with Theorem 4. 7, such a congruence has a solution if and only if 
gcd(a , b, n) divides e. The condition for solvability holds if either gcd(a , n) = 1 or 
gcd(b, n) = 1. Say gcd(a, n) = 1. When the congruence is expressed as 

ax = e - by (mod n) 

the corollary to Theorem 4.7 guarantees a unique solution x for each of the 
n incongruent values of y. Take as a simple illustration 7x + 4y = 5 (mod 12), 
that would be treated as 7x = 5- 4y (mod 12). Substitution of y = 5 (mod 12) 
gives 7x = -15 (mod 12); but this is equivalent to -5x = -15 (mod 12) so that 
x = 3 (mod 12). It follows that x = 3 (mod 12),y = 5 (mod 12) is one of the 12 
incongruent solutions of7x + 4y = 5 (mod 12). Another solution having the same 
value of x is x = 3 (mod 12),y = 8 (mod 12). 

The focus of our concern here is how to solve a system of two linear congruences 
in two variables with the same modulus. The proof of the coming theorem adopts 
the familiar procedure of eliminating one of the unknowns. 

Theorem 4.9. The system of linear congruences 

ax +by = r (mod n) 

ex + dy = s (mod n) 

has a unique solution modulo n whenever gcd(ad- be, n) = 1. 

Proof. Let us multiply the first congruence of the system by d, the second congruence 
by b, and subtract the lower result from the upper. These calculations yield 

(ad- bc)x = dr- bs (mod n) (1) 

The assumption gcd(ad- be, n) = 1 ensures that the congruence 

(ad- bc)z = 1 (mod n) 

posseses a unique solution; denote the solution by t. When congruence ( 1) is multiplied 
by t, we obtain 

x = t(dr - bs) (mod n) 

A value for y is found by a similar elimination process. That is, multiply the first 
congruence ofthe system by c, the second one by a, and subtract to end up with 

(ad- bc)y =as- cr (mod n) 

Multiplication of this congruence by t leads to 

y = t(as- cr) (mod n) 

A solution of the system is now established. 

We close this section with an example illustrating Theorem 4.9. 

(2) 
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Example 4.11. Consider the system 

7x + 3y = 10 (mod 16) 

2x + 5y = 9 (mod 16) 

Because gcd(7 · 5 - 2 · 3, 16) = gcd(29, 16) = 1, a solution exists. It is obtained by 
the method developed in the proof of Theorem 4.9. Multiplying the first congruence 
by 5, the second one by 3, and subtracting, we arrive at 

29x = 5 · 10-3 · 9 = 23 (mod 16) 

or, what is the same thing, 13x = 7 (mod 16). Multiplication of this congruence by 5 
(noting that 5 · 13 = 1 (mod 16)) produces x = 35 = 3 (mod 16). When the variable 
x is eliminated from the system of congruences in a like manner, it is found that 

29y = 7 · 9-2 · 10 = 43 (mod 16) 

But then 13y = 11 (mod 16), which upon multiplication by 5, results in y =55= 
7 (mod 16). The unique solution of our system turns out to be 

x = 3 (mod 16) 

PROBLEMS 4.4 

1. Solve the following linear congruences: 
(a) 25x = 15 (mod 29). 
(b) 5x = 2 (mod 26). 
(c) 6x = 15 (mod 21). 
(d) 36x = 8 (mod 102). 
(e) 34x = 60 (mod 98). 
(f) 140x = 133 (mod 301). 

[Hint: gcd(140, 301) = 7.] 

y = 7 (mod 16) 

2. Using congruences, solve the Diophantine equations below: 
(a) 4x +Sly= 9. 

[Hint: 4x = 9 (mod 51) gives x = 15 + 5lt, whereas Sly= 9 (mod 4) gives y = 
3 + 4s. Find the relation between s and t.] 

(b) 12x + 25y = 331. 
(c) 5x- 53y = 17. 

3. Find all solutions of the linear congruence 3x - 7y = 11 (mod 13). 
4. Solve each of the following sets of simultaneous congruences: 

(a) x = 1 (mod 3), x = 2 (mod 5), x = 3 (mod 7). 
(b) x = 5 (mod 11), x = 14 (mod 29), x = 15 (mod 31). 
(c) x = 5 (mod 6), x = 4 (mod 11), x = 3 (mod 17). 
(d) 2x = 1 (mod 5), 3x = 9 (mod 6), 4x = 1 (mod 7), 5x = 9 (mod 11). 

5. Solve the linear congruence 17x = 3 (mod 2 · 3 · 5 · 7) by solving the system 

l7x = 3 (mod 2) 

l7x = 3 (mod 5) 

6. Find the smallest integer a > 2 such that 

l7x = 3 (mod 3) 

l7x = 3 (mod 7) 

21 a, 31 a+ 1, 41 a+ 2, 51 a+ 3, 61 a+ 4 
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7. (a) Obtain three consecutive integers, each having a square factor. 
[Hint: Find an integer a such that 22 1 a, 32 1 a+ 1, 52 1 a+ 2.] 

(b) Obtain three consecutive integers, the first of which is divisible by a square, the 
second by a cube, and the third by a fourth power. 

8. (Brahmagupta, 7th century A.D.) When eggs in a basket are removed 2, 3, 4, 5, 6 at a 
time there remain, respectively, 1, 2, 3, 4, 5 eggs. When they are taken out 7 at a time, 
none are left over. Find the smallest number of eggs that could have been contained in 
the basket. 

9. The basket-of-eggs problem is often phrased in the following form: One egg remains 
when the eggs are removed from the basket 2, 3, 4, 5, or 6 at a time; but, no eggs remain 
if they are removed 7 at a time. Find the smallest number of eggs that could have been 
in the basket. 

10. (Ancient Chinese Problem.) A band of 17 pirates stole a sack of gold coins. When they 
tried to divide the fortune into equal portions, 3 coins remained. In the ensuing brawl over 
who should get the extra coins, one pirate was killed. The wealth was redistributed, but 
this time an equal division left 10 coins. Again an argument developed in which another 
pirate was killed. But now the total fortune was evenly distributed among the survivors. 
What was the least number of coins that could have been stolen? 

11. Prove that the congruences 

x =a (modn) and x = b (modm) 

admit a simultaneous solution if and only if gcd(n , m) I a - b; if a solution exists, confirm 
that it is unique modulo lcm(n, m). 

12. Use Problem 11 to show that the following system does not possess a solution: 

x = 5 (mod 6) and x = 7 (mod 15) 

13. If x =a (mod n), prove that either x =a (mod 2n) or x =a+ n (mod 2n). 
14. A certain integer between 1 and 1200 leaves the remainders 1, 2, 6 when divided by 9, 

11, 13, respective! y. What is the integer? 
15. (a) Find an integer having the remainders 1, 2, 5, 5 when divided by 2, 3, 6, 12, respec­

tively. (Yih-hing, died 717). 
(b) Find an integer having the remainders 2, 3, 4, 5 when divided by 3, 4, 5, 6, respective! y. 

(Bhaskara, born 1114). 
(c) Find an integer having the remainders 3, 11, 15 when divided by 10, 13, 17, respec­

tively. (Regiomontanus, 1436-1476). 
16. Let tn denote the nth triangular number. For which values of n does tn divide 

t~ + ti + ... + t~ 
[Hint: Because t~ + ti' + · · · + t~ = tn(3n 3 + 12n2 + 13n + 2)/30, it suffices to deter­
mine those n satisfying 3n3 + 12n2 + 13n + 2 = 0 (mod 2 · 3 · 5).] 

17. Find the solutions ofthe system of congruences: 

3x + 4y = 5 (mod 13) 

2x + 5y = 7 (mod 13) 

18. Obtain the two incongruent solutions modulo 210 of the system 

2x = 3 (mod 5) 

4x = 2 (mod 6) 

3x = 2 (mod 7) 
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19. Obtain the eight incongruent solutions of the linear congruence 3x + 4y = 5 (mod 8) 
20. Find the solutions of each of the following systems of congruences: 

(a) 5x + 3y = 1 (mod 7) 

3x + 2y = 4 (mod 7). 
(b) 7x + 3y = 6 (mod 11) 

4x + 2y = 9 (mod 11). 
(c) llx + 5y = 7 (mod 20) 

6x + 3y = 8 (mod 20). 



CHAPTER 

5 
FERMAT'S THEOREM 

And perhaps posterity will thank me for having shown it that the 
ancients did not know everything. 

P. DE FERMAT 

5.1 PIERRE DE FERMAT 

What the ancient world had known was largely forgotten during the intellectual 
torpor of the Dark Ages, and it was only after the 12th century that Western Europe 
again became conscious of mathematics. The revival of classical scholarship was 
stimulated by Latin translations from the Greek and, more especially, from the 
Arabic. The Latinization of Arabic versions of Euclid's great treatise, the Elements, 
first appeared in 1120. The translation was not a faithful rendering of the Elements, 
having suffered successive, inaccurate translations from the Greek-first into Arabic, 
then into Castilian, and finally into Latin-done by copyists not versed in the content 
of the work. Nevertheless, this much-used copy, with its accumulation of errors, 
served as the foundation of all editions known in Europe until1505, when the Greek 
text was recovered. 

With the fall of Constantinople to the Turks in 1453, the Byzantine schol­
ars who had served as the major custodians of mathematics brought the ancient 
masterpieces of Greek learning to the West. It is reported that a copy of what sur­
vived of Diophantus' Arithmetica was found in the Vatican library around 1462 by 
Johannes Muller (better known as Regiomontanus from the Latin name of his native 
town, Konigsberg). Presumably, it had been brought to Rome by the refugees from 
Byzantium. Regiomontanus observed that "In these books the very flower of the 
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Pierre de Fermat 
(1601-1665) 

(David Eugene Smith Collection, Rare Book 
and Manuscript Library, Columbia University) 

whole of arithmetic lies hid," and tried to interest others in translating it. Notwith­
standing the attention that was called to the work, it remained practically a closed 
book until 1572 when the first translation and printed edition was brought out by 
the German professor Wilhelm Holzmann, who wrote under the Grecian form of 
his name, Xylander. The Arithmetica became fully accessible to European math­
ematicians when Claude Bachet-borrowing liberally from Xylander-published 
( 1621) the original Greek text, along with a Latin translation containing notes and 
comments. The Bachet edition probably has the distinction of being the work that 
first directed the attention of Fermat to the problems of number theory. 

Few if any periods were so fruitful for mathematics as was the 17th century; 
Northern Europe alone produced as many men of outstanding ability as had ap­
peared during the preceding millennium. At a time when such names as Desargues, 
Descartes, Pascal, Wallis, Bernoulli, Leibniz, and Newton were becoming famous, a 
certain French civil servant, Pierre de Fermat (1601-1665), stood as an equal among 
these brilliant scholars. Fermat, the "Prince of Amateurs," was the last great mathe­
matician to pursue the subject as a sideline to a nonscientific career. By profession a 
lawyer and magistrate attached to the provincial parliament at Toulouse, he sought 
refuge from controversy in the abstraction of mathematics. Fermat evidently had no 
particular mathematical training and he evidenced no interest in its study until he 
was past 30; to him, it was merely a hobby to be cultivated in leisure time. Yet no 
practitioner of his day made greater discoveries or contributed more to the advance­
ment of the discipline: one of the inventors of analytic geometry (the actual term was 
coined in the early 19th century), he laid the technical foundations of differential 
and integral calculus and, with Pascal, established the conceptual guidelines of the 
theory of probability. Fermat's real love in mathematics was undoubtedly number 
theory, which he rescued from the realm of superstition and occultism where it had 
long been imprisoned. His contributions here overshadow all else; it may well be 
said that the revival of interest in the abstract side of number theory began with 
Fermat. 
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Fermat preferred the pleasure he derived from mathematical research itself to any 
reputation that it might bring him; indeed, he published only one major manuscript 
during his lifetime and that just 5 years before his death, using the concealing initials 
M.P.E.A.S. Adamantly refusing to put his work in finished form, he thwarted several 
efforts by others to make the results available in print under his name. In partial 
compensation for his lack of interest in publication, Fermat carried on a voluminous 
correspondence with contemporary mathematicians. Most of what little we know 
about his investigations is found in the letters to friends with whom he exchanged 
problems and to whom he reported his successes. They did their best to publicize 
Fermat's talents by passing these letters from hand to hand or by making copies, 
which were dispatched over the Continent. 

As his parliamentary duties demanded an ever greater portion of his time, Fermat 
was given to inserting notes in the margin of whatever book he happened to be 
using. Fermat's personal copy of the Bachet edition ofDiophantus held in its margin 
many of his famous theorems in number theory. These were discovered by his son 
Samuel 5 years after Fermat's death. His son brought out a new edition of the 
Arithmetica incorporating Fermat's celebrated marginalia. Because there was little 
space available, Fermat's habit had been to jot down some result and omit all steps 
leading to the conclusion. Posterity has wished many times that the margins of the 
Arithmetica had been wider or that Fermat had been a little less secretive about his 
methods. 

5.2 FERMAT'S LITTLE THEOREM AND PSEUDOPRIMES 

The most significant of Fermat's correspondents in number theory was Bernhard 
Fn!nicle de Bessy ( 1605-1675), an official at the French mint who was renowned for 
his gift of manipulating large numbers. (Fn!nicle 's facility in numerical calculation is 
revealed by the following incident: On hearing that Fermat had proposed the problem 
of finding cubes that when increased by their proper divisors become squares, as is the 
case with 73 + (1 + 7 + 72) = 202, he immediately gavefour different solutions, and 
supplied six more the next day.) Though in no way Fermat's equal as a mathematician, 
Frenicle alone among his contemporaries could challenge Fermat in number theory 
and Frenicle's challenges had the distinction of coaxing out of Fermat some of his 
carefully guarded secrets. One of the most striking is the theorem that states: If p 
is a prime and a is any integer not divisible by p, then p divides aP-l - 1. Fermat 
communicated the result in a letter to Frenicle dated October 18, 1640, along with 
the comment, "I would send you the demonstration, if I did not fear its being too 
long." This theorem has since become known as "Fermat's Little Theorem," or just 
"Fermat's Theorem," to distinguish it from Fermat's "Great" or "Last Theorem," 
which is the subject of Chapter 12. Almost 100 years were to elapse before Euler 
published the first proof of the little theorem in 1736. Leibniz, however, seems not 
to have received his share of recognition, for he left an identical argument in an 
unpublished manuscript sometime before 1683. 

We now proceed to a proof of Fermat's theorem. 
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Theorem 5.1 Fermat's theorem. Let p be a prime and suppose that p l a. Then 
aP-1 = 1 (mod p). 

Proof. We begin by considering the first p - 1 positive multiples of a; that is, the 
integers 

a, 2a, 3a, ... , (p - 1)a 

None of these numbers is congruent modulo p to any other, nor is any congruent to 
zero. Indeed, if it happened that 

ra =sa (mod p) 1 ~ r < s ~ p- 1 

then a could be canceled to give r = s (mod p ), which is impossible. Therefore, the 
previous set of integers must be congruent modulo p to 1, 2, 3, ... , p- 1, taken in 
some order. Multiplying all these congruences together, we find that 

a· 2a · 3a · · · (p- 1)a = 1 · 2 · 3 · · · (p- 1) (mod p) 

whence 

aP-1(p- 1)! = (p- 1)! (mod p) 

Once (p - 1)! is canceled from both sides of the preceding congruence (this is possible 
because since p l (p - 1)!), our line of reasoning culminates in the statement that 
ap-l = 1 (mod p), which is Fermat's theorem. 

This result can be stated in a slightly more general way in which the requirement 
that p X a is dropped. 

Corollary. If pis a prime, then aP =a (mod p) for any integer a. 

Proof. When p I a, the statement obviously holds; for, in this setting, aP = 0 = a 
(mod p). If p l a, then according to Fermat's theorem, we have ap-l = 1 (mod p). 
When this congruence is multiplied by a, the conclusion aP =a (mod p) follows. 

There is a different proof of the fact that aP =a (mod p), involving induction 
on a. If a= 1, the assertion is that 1P = 1 (mod p), which clearly is true, as is the 
case a = 0. Assuming that the result holds for a, we must confirm its validity for 
a + 1. In light of the binomial theorem, 

(a+ 1)P = aP + (f) ap-! + ... + (f) ap-k + · · · + (p ~ 1) a+ 1 

where the coefficient (f) is given by 

(p) p! 
k - k!(p- k)! 

p(p- 1) ... (p- k + 1) 

1. 2. 3 .. ·k 

Our argument hinges on the observation that (f) = 0 (mod p) for 1 S k S p - 1. 
To see this, note that 

k! (f) = p(p- 1) · · · (p- k + 1) = 0 (mod p) 
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by virtue of which pI k! or pI (f). But pI k! implies that pI j for some j satisfying 
1 ~ j ~ k ~ p - 1, an absurdity. Therefore, p I (f) or, converting to a congruence 
statement, 

(f)= 0 (mod p) 

The point we wish to make is that 

(a+ 1)P = aP + 1 =a+ 1 (mod p) 

where the rightmost congruence uses our inductive assumption. Thus, the desired 
conclusion holds for a + 1 and, in consequence, for all a ~ 0. If a happens to be 
a negative integer, there is no problem: because a= r (mod p) for some r, where 
0 ~ r ~ p - 1, we get aP = rP = r =a (mod p). 

Fermat's theorem has many applications and is central to much of what is done 
in number theory. In the least, it can be a labor-saving device in certain calculations. 
If asked to verify that 538 = 4 (mod 11 ), forinstance, we take the congruence 510 = 1 
(mod 11) as our starting point. Knowing this, 

538 = 510·3+8 = (510)\52)4 

= 13 .34 = 81 = 4 (mod 11) 

as desired. 
Another use of Fermat's theorem is as a tool in testing the primality of a given 

integer n. If it could be shown that the congruence 

an= a (mod n) 

fails to hold for some choice of a, then n is necessarily composite. As an example 
of this approach, let us look at n = 117. The computation is kept under control by 
selecting a small integer for a, say, a = 2. Because 2117 may be written as 

2m = 27·16+5 = <27)1625 

and 27 = 128 = 11 (mod 117), we have 

2117 = 11 16 . 25 = (121)825 = 48 . 25 = 221 (mod 117) 

But 221 = (27)3, which leads to 

221 = 113 = 121 . 11 = 4 . 11 = 44 (mod 117) 

Combining these congruences, we finally obtain 

2117 = 44 ¢. 2 (mod 117) 

so that 117 must be composite; actually, 117 = 13 · 9. 
It might be worthwhile to give an example illustrating the failure of the converse 

of Fermat's theorem to hold, in other words, to show that if an-1 = 1 (mod n) for 
some integer a, then n need not be prime. As a prelude we require a technical lemma. 

Lemma. If p and q are distinct primes with aP =a (mod q) and aq =a (mod p), 
then aPq =a (mod pq). 
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Proof. The last corollary tells us that (aq)P = aq (mod p), whereas aq =a (mod p) 
holds by hypothesis. Combining these congruences, we obtain aPq = a (mod p) or, in 
different terms, pI aPq -a. In an entirely similar manner, q I aPq -a. Corollary 2 to 
Theorem 2.4 now yields pq I aPq -a, which can be recast as aPq =a (mod pq). 

Our contention is that 2340 = 1 (mod 341 ), where 341 = 11 · 31. In working 
toward this end, notice that 210 = 1024 = 31 · 33 + 1. Thus, 

211 = 2. 210 = 2. 1 = 2 (mod 31) 

and 

Exploiting the lemma, 

211"31 = 2 (mod 11 · 31) 

or 2341 = 2 (mod 341). After canceling a factor of 2, we pass to 

2340 = 1 (mod 341) 

so that the converse to Fermat's theorem is false. 
The historical interest in numbers of the form 2n - 2 resides in the claim made by 

Chinese mathematicians over 25 centuries ago that n is prime if and only if n I 2n - 2 
(in point of fact, this criterion is reliable for all integers n :::=: 340). Our example, 
where 34112341 - 2, although 341 = 11 · 31, lays the conjecture to rest; this was 
discovered in the year 1819. The situation in which n 12n - 2 occurs often enough 
to merit a name, though: A composite integer n is called pseudoprime whenever 
n I 2n - 2. It can be shown that there are infinitely many pseudoprimes, the smallest 
four being 341, 561, 645, and 1105. 

Theorem 5.2 allows us to construct an increasing sequence ofpseudoprimes. 

Theorem 5.2. If n is an odd pseudoprime, then Mn = 2n - 1 is a larger one. 

Proof. Because n is a composite number, we can write n = r s, with 1 < r ::=: 
s < n. Then, according to Problem 21, Section 2.3, 2' - 112n - 1, or equivalently 
2' - 11 Mn, making Mn composite. By our hypotheses, 2n = 2 (mod n); hence 
2n - 2 = kn for some integer k. It follows that 

This yields 

2M.-! = 22"-2 = 2kn 

2M.-! - 1 = 2kn - 1 

= (2n _ 1)(2n(k-l) + 2n(k-2) + ... + 2n + 1) 

= Mn(2n(k-!) + 2n(k-2) + ... + 2n + 1) 

= 0 (mod Mn) 

We see immediately that 2M• - 2 = 0 (mod Mn), in light of which Mn is a pseudoprime. 
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More generally, a composite integer n for which an = a (mod n) is called a 
pseudoprime to the base a. (When a = 2, n is simply said to be a pseudoprime.) For 
instance, 91 is the smallest pseudoprime to base 3, whereas 217 is the smallest such 
to base 5. It has been proved (1903) that there are infinitely many pseudoprimes to 
any given base. 

These "prime imposters" are much rarer than are actual primes. Indeed, there are 
only 245 pseudoprimes smaller than one million, in comparison with 78498 primes. 
The first example of an even pseudoprime, namely, the number 

161038 = 2. 73. 1103 

was found in 1950. 
There exist composite numbers n that are pseudoprimes to every base a; that is, 

an = a (mod n) for all integers a. The least such is 561. These exceptional numbers 
are called absolute pseudoprimes or Carmichael numbers, for R. D. Carmichael, 
who was the first to notice their existence. In his first paper on the subject, published 
in 1910, Carmichael indicated four absolute pseudoprimes including the well-known 
561 = 3 · 11· 17;theothersare 1105 = 5 · 13 · 17,2821 = 7 · 13 · 31,and 15841 = 
7 · 31 · 73. Two years later he presented 11 more having three prime factors and 
discovered one absolute pseudoprime with four factors, specifically, 16046641 = 
13 · 37 · 73 · 457. The largest number of this kind known to date is the product of 
1101518 distinct odd primes: It has 16142049 digits. 

To see that 561 = 3 · 11 · 17 must be an absolute pseudoprime, notice that 
gcd(a, 561) = 1 gives 

gcd(a, 3) = gcd(a, 11) = gcd(a, 17) = 1 

An application of Fermat's theorem leads to the congruences 

a 2 = 1 (mod 3) a 10 = 1 (mod 11) a 16 = 1 (mod 17) 

and, in tum, to 

a560 = (az)zso = 1 (mod 3) 

a560 = (a10)56 = 1 (mod 11) 

a560 = (a 16)35 = 1 (mod 17) 

Thesegiverisetothesinglecongruencea560 = 1 (mod561), wheregcd(a, 561) = 1. 
But then a 561 =a (mod 561) for all a, showing 561 to be an absolute pseudoprime. 

Any absolute pseudoprime is square-free. This is easy to prove. Suppose 
thatan =a (modn)foreveryintegera, butk2 1 n forsomek > l.Ifweleta = k, then 
kn = k (mod n). Because k2 1 n, this last congruence holds modulo k2 ; that is, k = 
kn = 0 (mod k2), whence k2 1 k, which is impossible. Thus, n must be square-free. 

Next we present a theorem that furnishes a means for producing absolute 
pseudoprimes. 

Theorem 5.3. Let n be a composite square-free integer, say, n = p 1p2 • • • p,, where 
the Pi are distinct primes. If Pi - 1 I n - 1 for i = 1, 2, ... , r, then n is an absolute 
pseudoprime. 
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Proof. Suppose that a is an integer satisfying gcd(a, n) = 1, so that gcd(a, Pi)= 1 
for each i. Then Fermat's theorem yields Pi I ap,-l- 1. From the divisibility hy­
pothesis Pi - 11 n- 1, we have Pi I an-! - 1, and therefore Pi I an -a for all a and 
i = 1, 2, ... , r. As a result of Corollary 2 to Theorem 2.4, we end up with n I an -a, 
which makes n an absolute pseudoprime. 

Examples of integers that satisfy the conditions of Theorem 5.3 are 

1729 = 7. 13. 19 6601 = 7. 23 . 41 10585 = 5 . 29 . 73 

It was proven in 1994 that infinite I y many absolute pseudoprimes exist, but that they 
are fairly rare. There are just 43 of them less than one million, and 105212 less 
than 1015 • 

PROBLEMS 5.2 

1. Use Fermat's theorem to verify that 17 divides 11 104 + 1. 
2. (a) If gcd(a, 35) = 1, show that a 12 = 1 (mod 35). 

[Hint: From Fermat's theorem a6 = 1 (mod 7) and a4 = 1 (mod 5).] 
(b) If gcd(a, 42) = 1, show that 168 = 3 · 7 · 8 divides a6 - 1. 
(c) If gcd(a, 133) = gcd(b, 133) = 1, show that 1331 a 18 - b18 • 

3. From Fermat's theorem deduce that, for any integer n :::::: 0, 13 111 12n+6 + 1. 
4. Derive each of the following congruences: 

(a) a 21 = a (mod 15) for all a. 
[Hint: By Fermat's theorem, a5 = a (mod 5).] 

(b) a 7 =a (mod 42) for all a. 
(c) a 13 =a (mod 3 · 7 · 13) for all a. 
(d) a9 =a (mod 30) for all a. 

5. If gcd(a, 30) = 1, show that 60 divides a4 +59. 
6. (a) Find the units digit of 3100 by the use of Fermat's theorem. 

(b) For any integer a, verify that a5 and a have the same units digit. 
7. If7 )'a, prove that either a3 + 1 or a3 - 1 is divisible by 7. 
8. The three most recent appearances of Halley's comet were in the years 1835, 1910, and 

1986; the next occurrence will be in 2061. Prove that 

18351910 + 19862061 = 0 (mod 7) 

9. (a) Let p be a prime and gcd(a, p) = 1. Use Fermat's theorem to verify that x = aP-2b 
(mod p) is a solution of the linear congruence ax = b (mod p ). 

(b) By applying part (a), solve the congruences 2x = 1 (mod 31 ), 6x = 5 (mod 11 ), and 
3x = 17 (mod 29). 

10. Assuming that a and bare integers not divisible by the prime p, establish the following: 
(a) If aP = bP (mod p), then a = b (mod p). 
(b) If aP = bP (mod p), then aP = bP (mod p 2). 

[Hint: By (a), a = b + pk for some k, so thataP - bP = (b + pk)P - bP; now show 
that p 2 divides the latter expression.] 

11. Employ Fermat's theorem to prove that, if pis an odd prime, then 
(a) 1P-1 + 2P-1 + 3p-! + · · · + (p- 1)P-1 = -1 (mod p). 
(b) 1P + 2P + 3P + · · · + (p- l)P := 0 (mod p). 

[Hint: Recall the identity 1 + 2 + 3 + · · · + (p - 1) = p(p - 1)/2.] 
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12. Prove that if p is an odd prime and k is an integer satisfying 1 :::; k :::; p - 1, then the 
binomial coefficient 

(p; 1) = (-1l (modp) 

13. Assume that p and q are distinct odd primes such that p - 1 I q - 1. If gcd(a , pq) = 1, 
show thataq-l = 1 (mod pq). 

14. If p and q are distinct primes, prove that 

pq-l + qp-l = 1 (mod pq) 

15. Establish the statements below: 
(a) If the number M P = 2P - 1 is composite, where p is a prime, then M P is a pseudo­

prime. 
(b) Every composite number Fn = 22" + 1 is a pseudoprime (n = 0, 1, 2, ... ). 

[Hint: By Problem 21, Section 2.3, 2n+1122" implies that 22"+' - 112F.-l - 1; 
but Fn 122"+' - 1.] 

16. Confirm that the following integers are absolute pseudoprimes: 
(a) 1105 = 5 · 13 · 17. 
(b) 2821 = 7. 13. 31. 
(c) 2465 = 5 · 17 · 29. 

17. Show that the smallest pseudoprime 341 is not an absolute pseudoprime by showing that 
11341 =J=. 11 (mod 341 ). 
[Hint: 31 )'11 341 - 11.] 

18. (a) When n = 2p, where p is an odd prime, prove that an-! =a (mod n) for any 
integer a. 

(b) For n = 195 = 3 · 5 · 13, verify that an-2 =a (mod n) for any integer a. 
19. Prove that any integer of the form 

n = (6k + 1)(12k + 1)(18k + 1) 

is an absolute pseudoprime if all three factors are prime; hence, 1729 = 7 · 13 · 19 is an 
absolute pseudoprime. 

20. Show that 56112561 - 2 and 56113561 - 3. It is an unanswered question whether there 
exist infinitely many composite numbers n with the property that n I 2n - 2 and n I 3n - 3. 

21. Establish the congruence 

22225555 + 55552222 = 0 (mod 7) 

[Hint: First evaluate 1111 modulo 7.] 

5.3 WILSON'S THEOREM 

We now tum to another milestone in the development of number theory. fu his 
Meditationes Algebraicae of 1770, the English mathematician Edward Waring 
(1734-1798) announced several new theorems. Foremost among these is an in­
teresting property of primes reported to him by one of his former students, a certain 
John Wilson. The property is the following: If p is a prime number, then p divides 
(p- 1)! + 1. Wilson appears to have guessed this on the basis of numerical com­
putations; at any rate, neither he nor Waring knew how to prove it. Confessing his 
inability to supply a demonstration, Waring added, "Theorems of this kind will be 
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very hard to prove, because of the absence of a notation to express prime numbers." 
(Reading the passage, Gauss uttered his telling comment on "notationes versus no­
tiones," implying that in questions of this nature it was the notion that really mattered, 
not the notation.) Despite Waring's pessimistic forecast, soon afterward Lagrange 
(1771) gave a proof of what in literature is called "Wilson's theorem" and observed 
that the converse also holds. Perhaps it would be more just to name the theorem after 
Leibniz, for there is evidence that he was aware of the result almost a century earlier, 
but published nothing on the subject. 

Now we give a proof of Wilson's theorem. 

Theorem 5.4 Wilson. If pis a prime, then (p- 1)! = -1 (mod p). 

Proof. Dismissing the cases p = 2 and p = 3 as being evident, let us take p > 3. 
Suppose that a is any one of the p - 1 positive integers 

1, 2, 3, ... ' p- 1 

and consider the linear congruence ax = 1 (mod p). Then gcd(a, p) = 1. By Theorem 
4.7, this congruence admits a unique solution modulo p; hence, there is a unique integer 
a', with 1 ~a' ~ p- 1, satisfying aa' = 1 (mod p). 

Because p is prime, a = a' if and only if a = 1 or a = p - 1. Indeed, the con­
gruence a 2 = 1 (mod p) is equivalent to (a- 1) ·(a+ 1) = 0 (mod p). Therefore, 
either a- 1 = 0 (mod p), in which case a= 1, or a+ 1 = 0 (mod p), in which case 
a=p-1. 

If we omit the numbers 1 and p - 1, the effect is to group the remaining integers 
2, 3, ... , p - 2 into pairs a, a', where a =I= a', such that their product aa' = 1 (mod p ). 
When these (p- 3)/2 congruences are multiplied together and the factors rearranged, 
we get 

2 · 3 · · · (p - 2) = 1 (mod p) 

or rather 

(p- 2)! = 1 (mod p) 

Now multiply by p - 1 to obtain the congruence 

(p- 1)! = p- 1 = -1 (mod p) 

as was to be proved. 

Example 5.1. A concrete example should help to clarify the proof of Wilson's theorem. 
Specifically, let us take p = 13. It is possible to divide the integers 2, 3, ... , 11 into 
(p- 3)/2 = 5 pairs, each product of which is congruent to 1 modulo 13. To write 
these congruences out explicitly: 

2 · 7 = 1 (mod 13) 

3 · 9 = 1 (mod 13) 

4 · 10 = 1 (mod 13) 

5 · 8 = 1 (mod 13) 

6 · 11 = 1 (mod 13) 
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Multiplying these congruences gives the result 

11! = (2 · 7)(3 · 9)( 4 · 10)(5 · 8)(6 · 11) = 1 (mod 13) 

and so 

12! = 12 = -1 (mod 13) 

Thus, (p- 1)! = -1 (mod p), with p = 13. 

The converse of Wilson's theorem is also true. If (n- 1)! = -1 (mod n), then 
n must be prime. For, if n is not a prime, then n has a divisor d with 1 < d < n. 
Furthermore, because d .:S n- 1, d occurs as one of the factors in (n- 1)!, whence 
d I (n - 1)!. Now we are assuming that n I (n- 1)! + 1, and sod I (n - 1)! + 1, too. 
The conclusion is that d I 1, which is nonsense. 

Taken together, Wilson's theorem and its converse provide a necessary and 
sufficient condition for determining primality; namely, an integer n > 1 is prime if 
and only if(n - 1)! = -1 (modn). Unfortunately, this testis of more theoretical than 
practical interest because as n increases, (n - 1)! rapidly becomes unmanageable in 
size. 

We would like to close this chapter with an application of Wilson's theorem 
to the study of quadratic congruences. [It is understood that quadratic congruence 
means a congruence of the form ax2 + bx + c = 0 (mod n ), with a ¢. 0 (mod n ).] 
This is the content of Theorem 5.5. 

Theorem 5.5. The quadratic congruence x2 + 1 = 0 (mod p ), where p is an odd 
prime, has a solution if and only if p = 1 (mod 4). 

Proof. Let a be any solution of x2 + 1 = 0 (mod p ), so that a 2 = -1 (mod p ). Because 
p l a, the outcome of applying Fermat's theorem is 

1 = ap-1 = (a2ip-I)/2 = (-1)(p-1)/2 (mod p) 

The possibility that p = 4k + 3 for some k does not arise. If it did, we would have 

( -1)(p-1)/2 = ( -1fk+l = -1 

hence, 1 = -1 (mod p ). The net result of this is that p I 2, which is patently false. 
Therefore, p must be of the form 4k + 1. 

Now for the opposite direction. In the product 

p-1 p+1 
(p - 1)! = 1 . 2 ... -2- . -2- ... (p- 2)(p - 1) 

we have the congruences 

p- 1 = -1 (mod p) 

p- 2 = -2(modp) 

p+1 p-1 -- = --- (modp) 
2 2 
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Rearranging the factors produces 

p-l ( p-1) (p- 1)! = 1 · (-1). 2 · (-2) · · · - 2 - · --2- (mod p) 

( -1 2 p- 1 ( )
2 

=(-l)P l/ 1·2···-2- (modp) 

because there are (p - 1)/2 minus signs involved. It is at this point that Wilson's 
theorem can be brought to bear; for, (p- 1)! = -1 (mod p), whence 

-1 = <-lip-1)/Z [ ( p ~ 1 }r <mod p) 

If we assume that p is of the form 4k + 1, then ( -1 ip-1)/Z = 1, leaving us with the 
congruence 

-1 = [ ( p ~ 1} r (mod p) 

The conclusion is thatthe integer [(p - 1) /2]! satisfies the quadratic congruence x2 + 1 
= 0 (modp). 

Let us take a look at an actual example, say, the case p = 13, which is a prime 
ofthe form 4k + 1. Here, we have (p - 1) /2 = 6, and it is easy to see that 

6! = 720 = 5 (mod 13) 

and 

52 + 1 = 26 = 0 (mod 13) 

Thus, the assertion that [((p- 1)/2)!]2 + 1 = 0 (mod p) is correct for p = 13. 
Wilson's theorem implies that there exists an infinitude of composite numbers 

of the form n! + 1. On the other hand, it is an open question whether n! + 1 is prime 
for infinitely many values of n. The only values of n in the range 1 ~ n ~ 100 for 
which n! + 1 is known to be a prime number are n = 1, 2, 3, 11, 27, 37, 41, 73, and 
77. Currently, the largest prime of the form n! + 1 is 6380! + 1, discovered in 2000. 

PROBLEMS 5.3 

1. (a) Find the remainder when 15! is divided by 17. 
(b) Find the remainder when 2(26!) is divided by 29. 

2. Determine whether 17 is a prime by deciding whether 16! = -1 (mod 17). 
3. Arrange the integers 2, 3, 4, ... , 21 in pairs a and b that satisfy ab = 1 (mod 23). 
4. Show that 18! = -1 (mod 437). 
5. (a) Prove that an integer n > 1 is prime if and only if (n- 2)! = 1 (mod n). 

(b) If n is a composite integer, show that (n- 1)! = 0 (mod n), except when n = 4. 
6. Given a prime number p, establish the congruence 

(p - 1)! = p - 1 (mod 1 + 2 + 3 + · · · + (p - 1)) 
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7. If pis a prime, prove that for any integer a, 

pI aP + (p - 1)!a and pI (p - 1)!aP +a 

[Hint: By Wilson's theorem, aP + (p- 1)!a = aP- a (mod p).] 
8. Find two odd primes p :=:: 13 for which the congruence (p - 1)! = -1 (mod p 2) holds. 
9. Using Wilson's theorem, prove that for any odd prime p, 

12 . 32 . 52 ... (p - 2)2 = ( -1)(p+l)/2 (mod p) 

[Hint: Because k = -(p- k) (mod p), it follows that 

2·4 · 6· · ·(p -1) = (-1)(p-l)/21· 3 · 5·· ·(p- 2) (mod p).] 

10. (a) For a prime p of the form 4k + 3, prove that either 

( p ~ 1 )' = 1 (mod p) or ( p ~ 1} = -1 (mod p) 

hence, [(p- 1)/2]! satisfies the quadratic congruence x2 = 1 (mod p). 
(b) Use part (a) to show that if p = 4k + 3 is prime, then the product of all the even 

integers less than p is congruent modulo p to either 1 or -1. 
[Hint: Fermat's theorem implies that 2(p-l)/2 = ±1 (mod p).] 

11. Apply Theorem 5.5 to obtain two solutions to each of the quadratic congruences x2 = -1 
(mod 29) and x2 = -1 (mod 37). 

12. Show that if p = 4k + 3 is prime and a 2 + b2 = 0 (mod p), then a= b = 0 (mod p). 
[Hint: If a =/= 0 (mod p ), then there exists an integer c such that ac = 1 (mod p ); use this 
fact to contradict Theorem 5.5.] 

13. Supply any missing details in the following proof of the irrationality of .../2: Suppose 
.../2 = a/b, with gcd(a, b) = 1. Then a 2 = 2b2, so that a 2 + b2 = 3b2. But 31 (a2 + b2) 
implies that 3 I a and 3 I b, a contradiction. 

14. Prove that the odd prime divisors of the integer n2 + 1 are of the form 4k + 1. 
[Hint: Theorem 5.5.] 

15. Verify that 4(29!) + 5! is divisible by 31. 
16. For a prime p and 0 :=:: k :=:: p- 1, show that k!(p- k- 1)! = ( -1)k+1 (mod p). 
17. If p and q are distinct primes, prove that for any integer a, 

pq I aPq - aP - aq + a 

18. Prove that if p and p + 2 are a pair of twin primes, then 

4((p - 1)! + 1) + p = 0 (mod p(p + 2)) 

5.4 THE FERMAT-KRAITCHIK FACTORIZATION METHOD 

fu a fragment of a letter, written in all probability to Father Marin Mersenne in 1643, 
Fermat described a technique of his for factoring large numbers. This represented 
the first real improvement over the classical method of attempting to find a factor 
ofn by dividing by all primes not exceeding y'n. Fermat's factorization scheme has 
at its heart the observation that the search for factors of an odd integer n (because 
powers of 2 are easily recognizable and may be removed at the outset, there is no 
loss in assuming that n is odd) is equivalent to obtaining integral solutions x and y 
of the equation 
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If n is the difference of two squares, then it is apparent that n can be factored as 

n = x 2 - l = (x + y )(x - y) 

Conversely, when n has the factorization n = ab, with a ~ b ~ 1, then we may write 

Moreover, because n is taken to be an odd integer, a and b are themselves odd; hence 
(a+ b)/2 and (a- b)/2 will be nonnegative integers. 

One begins the search for possible x andy satisfying the equation n = x 2 - y2 , 

or what is the same thing, the equation 

x2- n = y2 

by first determining the smallest integer k for which k 2 ~ n. Now look successively 
at the numbers 

k2 - n, (k + 1)2 - n, (k + 2)2 - n, (k + 3)2 - n, ... 

until a value of m ~ Jn is found making m2 - n a square. The process cannot go 
on indefinitely, because we eventually arrive at 

(n:1Y-n=(n;1Y 
the representation of n corresponding to the trivial factorization n = n · 1. If this 
point is reached without a square difference having been discovered earlier, then n 
has no factors other than n and 1, in which case it is a prime. 

Fermat used the procedure just described to factor 

2027651281 = 44021.46061 

in only 11 steps, as compared with making 4580 divisions by the odd primes up to 
44021. This was probably a favorable case devised on purpose to show the chief 
virtue of his method: It does not require one to know all the primes less than Jn to 
find factors of n. 

Example 5.2. To illustrate the application of Fermat's method, let us factor the integer 
n = 119143. From a table of squares, we find that 3452 < 119143 < 3462; thus it 
suffices to consider values of k2 - 119143 for those k that satisfy the inequality 346 .:::: 
k < (119143 + 1)/2 = 59572. The calculations begin as follows: 

3462 - 119143 = 119716- 119143 = 573 

3472 - 119143 = 120409- 119143 = 1266 

3482 - 119143 = 121104- 119143 = 1961 

3492 - 119143 = 121801 - 119143 = 2658 

3502 - 119143 = 122500- 119143 = 3357 

3512 - 119143 = 123201- 119143 = 4058 

3522 - 119143 = 123904- 119143 = 4761 = 692 
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This last line exhibits the factorization 

119143 = 3522 - 692 = (352 + 69)(352- 69) = 421 . 283 

the two factors themselves being prime. In only seven trials, we have obtained the prime 
factorization of the number 119143. Of course, one does not always fare so luckily; it 
may take many steps before a difference turns out to be a square. 

Fermat's method is most effective when the two factors of n are of nearly the 
same magnitude, for in this case a suitable square will appear quickly. To illustrate, 
let us suppose that n = 23449 is to be factored. The smallest square exceeding n is 
1542 , so that the sequence k 2 - n starts with 

1542 -23449 = 23716-23449 = 267 

1552 -23449 = 24025-23449 = 576 = 242 

Hence, factors of 23449 are 

23449 = (155 + 24)(155- 24) = 179. 131 

When examining the differences k 2 - n as possible squares, many values can be 
immediately excluded by inspection of the final digits. We know, for instance, that 
a square must end in one ofthe six digits 0, 1, 4, 5, 6, 9 (Problem 2(a), Section 4.3). 
This allows us to exclude all values in Example 5.2, save for 1266, 1961, and 4761. 
By calculating the squares ofthe integers from 0 to 99 modulo 100, we see further 
that, for a square, the last two digits are limited to the following 22 possibilities: 

00 21 41 64 89 

01 24 44 69 96 

04 25 49 76 

09 29 56 81 

16 36 61 84 

The integer 1266 can be eliminated from consideration in this way. Because 61 is 
among the last two digits allowable in a square, it is only necessary to look at the 
numbers 1961 and 4761; the former is not a square, but 4761 = 692 . 

There is a generalization of Fermat's factorization method that has been used 
with some success. Here, we look for distinct integers x and y such that x 2 - y2 is 
a multiple of n rather than n itself; that is, 

x 2 = l (modn) 

Having obtained such integers, d = gcd(x- y, n) (or d = gcd(x + y, n)) can be 
calculated by means of the Euclidean Algorithm. Clearly, dis a divisor of n, but is 
it a nontrivial divisor? In other words, do we have 1 < d < n? 

In practice, n is usually the product oftwo primes p and q, with p < q, so that 
dis equal to 1, p, q, or pq. Now the congruence x 2 = y2 (mod n) translates into 
pq I (x- y)(x + y). Euclid's lemma tells us that p and q must divide one of the 
factors. If it happened that p I x - y and q I x - y, then pq I x - y, or expressed as 
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a congruence x = y (mod n). Also, pIx+ y and q I x + y yield x = -y (mod n). 
By seeking integers x and y satisfying x 2 = y2 (mod n ), where x ¢. ±y (mod n ), 
these two situations are ruled out. The result of all this is that d is either p or q, 
giving us a nontrivial divisor of n. 

Example 5.3. Suppose we wish to factor the positive integer n = 2189 and happen to 
notice that 5792 = 182 (mod 2189). Then we compute 

gcd(579- 18, 2189) = gcd(561 , 2189) = 11 

using the Euclidean Algorithm: 

2189 = 3 . 561 + 506 

561 = 1. 506 +55 

506 = 9 . 55 + 11 

55= 5. 11 

This leads to the prime divisor 11 of 2189. The other factor, namely 199, can be obtained 
by observing that 

gcd(579 + 18, 2189) = gcd(597, 2189) = 199 

The reader might wonder how we ever arrived at a number, such as 579, whose 
square modulo 2189 also turns out to be a perfect square. In looking for squares 
close to multiples of 2189, it was observed that 

81 2 -3 · 2189 = -6 and 1552 - 11 · 2189 =-54 

which translates into 

812 = -2 · 3 (mod 2189) and 1552 = -2 · 33 (mod 2189) 

When these congruences are multiplied, they produce 

(81 · 155)2 = (2 · 32) 2 (mod 2189) 

Because the product 81 · 155 = 12555 = -579 (mod 2189), we ended up with the 
congruence 5792 = 182 (mod 2189). 

The basis of our approach is to find several Xi having the property that each xl 
is, modulo n, the product of small prime powers, and such that their product's square 
is congruent to a perfect square. 

When n has more than two prime factors, our factorization algorithm may still 
be applied; however, there is no guarantee that a particular solution of the congruence 
x 2 = y 2 (mod n), with x ¢. ±y (mod n), will result in a nontrivial divisor of n. Of 
course the more solutions of this congruence that are available, the better the chance 
of finding the desired factors of n. 

Our next example provides a considerably more efficient variant of this last 
factorization method. It was introduced by Maurice Kraitchik in the 1920s and 
became the basis of such modem methods as the quadratic sieve algorithm. 

Example 5.4. Let n = 12499 be the integer to be factored. The first square just larger 
than n is 1122 = 12544. So we begin by considering the sequence of numbers x2 - n 
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for x = 112, 113, .... As before, our interest is in obtaining a set of values x1, 

x2 , ••• , Xk for which the product (x; - n) · · · (xk- n) is a square, say y 2 • Then 
(x1 • • • xk)2 = y 2 (mod n ), which might lead to a nontrivial factor of n. 

A short search reveals that 

1122 - 12499 = 45 

1172 - 12499 = 1190 

1212 - 12499 = 2142 

or, written as congruences, 

1122 = 32 • 5 (mod 12499) 

1172 = 2. 5. 7 · 17 (mod 12499) 

1212 = 2. 32 • 7 · 17 (mod 12499) 

Multiplying these together results in the congruence 

(112 · 117 · 121)2 = (2 · 32 · 5 · 7 · 17)2 (mod 12499) 

that is, 

15855842 = 107102 (mod 12499) 

But we are unlucky with this square combination. Because 

1585584 = 10710 (mod 12499) 

only a trivial divisor of 12499 will be found. To be specific, 

gcd(1585584 + 10710, 12499) = 1 

gcd(1585584- 10710, 12499) = 12499 

After further calculation, we notice that 

1132 = 2 · 5 · 33 (mod 12499) 

1272 = 2. 3 · 5 · 112 (mod 12499) 

which gives rise to the congruence 

(113 · 127)2 = (2 · 32 · 5 · 11)2 (mod 12499) 

This reduces modulo 12499 to 

18522 = 9902 (mod 12499) 

and fortunately 1852 =J=. ± 990 (mod 12499). Calculating 

gcd(1852- 990, 12499) = gcd(862, 12499) = 431 

produces the factorization 12499 = 29 · 431. 
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PROBLEMS 5.4 

1. Use Fermat's method to factor each of the following numbers: 
(a) 2279. 
(b) 10541. 
(c) 340663 [Hint: The smallest square just exceeding 340663 is 5842.] 

2. Prove that a perfect square must end in one of the following pairs of digits: 00, 01, 04, 09, 
16,21,24,25,29,36,41,44,49,56,61,64,69, 76,81,84,89,96. 
[Hint: Because x2 =(50+ x)2 (mod 100) and x2 =(50- x)2 (mod 100), it suffices to 
examine the final digits of x2 for the 26 values x = 0, 1, 2, ... , 25.] 

3. Factor the number 211 - 1 by Fermat's factorization method. 
4. In 1647, Mersenne noted that when a number can be written as a sum of two relatively 

prime squares in two distinct ways, it is composite and can be factored as follows: If 
n = a 2 + b2 = c2 + d 2, then 

(ac + bd)(ac - bd) 
n= 

(a +d)(a- d) 

Use this result to factor the numbers 

493 = 182 + 132 = 222 + 32 

and 

5. Employ the generalized Fermat method to factor each of the following numbers: 
(a) 2911 [Hint: 1382 = 672 (mod 2911).] 
(b) 4573 [Hint: 1772 = 922 (mod 4573).] 
(c) 6923 [Hint: 2082 = 932 (mod 6923).] 

6. Factor 13561 with the help of the congruences 

2332 = 32 • 5 (mod 13561) and 12812 = 24 • 5 (mod 13561) 

7. (a) Factor the number 4537 by searching for x such that 

x2 - k · 4537 

is the product of small prime powers. 
(b) Use the procedure indicated in part (a) to factor 14429. 

[Hint: 1202 - 14429 = -29 and 30032 -625 · 14429 = -116.] 
8. Use Kraitchik's method to factor the number 20437. 
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