Sementer-II

Course Type-Core-3

Course Title-C3T: Real Analysis

Topic-Sul sequence

References-S.K. Mapa Book.

References-S.K. Mapa Book.

Shamble Nath Acharga

Date: 14.04.2020

Real Sequence 2

Example: Let $u_n = \frac{1}{n}$ and $r_n = 2n$ for all $n \in \mathbb{N}$.

Then $\{u_{r_n}\}=\{u_2,u_4,u_6,\ldots\}=\left\{\frac{1}{2},\frac{1}{4},\frac{1}{6},\ldots\right\}$ is a subsequence of $\left\{\frac{1}{n}\right\}$.

Theorem: If a sequence $\{u_n\}$ converges to l then every subsequence of $\{u_n\}$ also converges to l.

VU'1997' 00

Proof: Let $\{r_n\}$ be strictly increasing sequence of natural numbers. Then $\{u_{r_n}\}$ is a subsequence of the sequence $\{u_n\}$.

Let $\varepsilon > 0$. Since $\lim_{n \to \infty} u_n = l$, there exists a natural number k such that $l - \varepsilon < u_n < l + \varepsilon$ for all $n \ge k$

Since $\{r_n\}$ is a strictly increasing sequence of natural numbers, there exists a natural number k_0 such that $r_n > k$ for all $n \ge k_0$.

Therefore $l - \varepsilon < u_{r_n} < l + \varepsilon$ for all $n \ge k_0$

i.e., $|u_{r_n} - l| < \varepsilon$ for all $n \ge k_0$

Since ε is arbitrary, $\lim_{n\to\infty} u_{r_n} = l$

Ex 1: Prove that $\lim_{n\to\infty} \left(1 + \frac{1}{2n}\right)^n = \sqrt{e}$.

VU'2001, 07

Let $u_n = \left(1 + \frac{1}{n}\right)^n$, $v_n = \left(1 + \frac{1}{2n}\right)^{2n}$ and $w_n = \left(1 + \frac{1}{2n}\right)^n$ for all $n \in \mathbb{N}$.

 $\{u_n\}$ is a convergent sequence and $\lim_{n\to\infty} u_n = e$.

Since $v_n = u_{2n}$ for all $n \in \mathbb{N}$, $\{v_n\}$ is a subsequence of $\{u_n\}$ and therefore $\lim_{n \to \infty} v_n = e$.

Now $w_n = \sqrt{v_n}$ for all $n \in \mathbb{N}$. Therefore $\lim_{n \to \infty} w_n = \lim_{n \to \infty} \sqrt{v_n} = \sqrt{e}$

Ex 2: Prove that the sequence $\{(-1)^n\}$ is not convergent.

VU'2000

Let $u_n = (-1)^n$, $v_n = u_{2n}$, $w_n = u_{2n-1}$.

Then $\{v_n\}$ is the subsequence $\{1,1,1,\ldots,v_n\}$ and $\lim_{n\to\infty}v_n=1,\{w_n\}$ is the subsequence

 $\{-1,-1,-1,\ldots\}$ and $\lim_{n\to\infty} w_n = -1$.

Since two different subsequences converge to two different limits, the sequence $\{u_n\}$ is not convergent.

Theorem: If the subsequences $\{u_{2n}\}$ and $\{u_{2n-1}\}$ of a sequence $\{u_n\}$ converge to the same limit l then the sequence $\{u_n\}$ is convergent and $\lim_{n\to\infty}u_n=l$.

page-13

Note1: If two subsequences of a sequence converge to the same limit l, the sequence $\{u_n\}$ may not be convergent.

For example, let $u_n = \sin \frac{n\pi}{4}$.

Then the subsequence $\{u_{8n-7}\}$ is $\left\{\sin\frac{\pi}{4},\sin\frac{9\pi}{4},\sin\frac{17\pi}{4},\dots\right\}$ and this converges to $\frac{1}{\sqrt{2}}$.

The subsequence $\{u_{8n-5}\}$ is $\left\{\sin\frac{3\pi}{4}, \sin\frac{11\pi}{4}, \sin\frac{19\pi}{4}, \dots\right\}$ and this converges to $\frac{1}{\sqrt{2}}$

But the sequence $\{u_n\}$ is not convergent.

Note2: If $k \in \mathbb{N}$ and k subsequences $\{u_{kn}\}$, $\{u_{kn-1}\}$, $\{u_{kn-2}\}$,....., $\{u_{kn-k+1}\}$ converges to the same limit l then the sequence $\{u_n\}$ is convergent and $\lim_{n \to \infty} u_n = l$.

<u>Theorem:</u> Every subsequence of a monotone increasing (decreasing) sequence of real numbers is monotone increasing (decreasing).

<u>Theorem:</u> A monotone sequence of real numbers having a convergent subsequence with limit l, is convergent with limit l.

<u>Theorem:</u> A monotone sequence of real numbers having a divergent subsequence is properly divergent.

Ex 3: Let $\{u_n\}$ be a sequence defined by $0 < u_1 < u_2$ and $u_{n+2} = \frac{1}{2}(u_n + u_{n+1})$. Prove that both the subsequence $\{u_{2n}\}$ and $\{u_{2n-1}\}$ converge to the same limit.

$$u_3 - u_1 = \frac{u_1 + u_2}{2} - u_1 = \frac{u_2 - u_1}{2} > 0 \text{ i.e. } u_1 < u_3$$

$$u_3 - u_2 = \frac{u_1 + u_2}{2} - u_2 = \frac{u_1 - u_2}{2} < 0 \text{ i.e. } u_3 < u_2$$
 and $u_2 - u_2 = 0$, $u_4 - 3 = 0$

So, $u_1 < u_3 < u_2$. Similarly $u_3 < u_4 < u_2, u_3 < u_5 < u_4, u_5 < u_6 < u_4, \dots$

This inequality gives $u_1 < u_3 < u_5 < \dots < u_6 < u_4 < u_2$

This shows that the sequence $\{u_{2n-1}\}$ is a monotone increasing sequence bounded above, u_2 is an upper bound

Also the sequence $\{u_{2n}\}$ is a monotone decreasing sequence bounded below, u_1 being a lower bound.

Thus both the sequences $\{u_{2n-1}\}$ and $\{u_{2n}\}$ are convergent Let $\lim_{n\to\infty}u_{2n}=l$ and $\lim_{n\to\infty}u_{2n-1}=m$. Now from the given relation $2u_{2n+2}=u_{2n}+u_{2n+1}$

$$\lim_{n \to \infty} 2u_{2n+2} = \lim_{n \to \infty} u_{2n} + \lim_{n \to \infty} u_{2n+1}$$

$$\Rightarrow 2l = l + m \Rightarrow l = m$$

Ex 4: A sequence $\{u_n\}$ defined by $u_n > 0$ and $u_{n+1} = \frac{6}{1+u_n}$ for all $n \in \mathbb{N}$

- (i)Prove that the sub-sequences $\{u_{2n-1}\}$ and $\{u_{2n}\}$ converges to common limit
- (ii) Find $\lim_{n\to\infty} u_n$

$$u_{n+1} - u_n = \frac{6}{1 + u_n} - u_n = \frac{6 - u_n - u_n^2}{1 + u_n} = \frac{(2 - u_n)(3 + u_n)}{1 + u_n}$$

Therefore $u_n < 2 \Rightarrow u_{n+1} = \frac{6}{1+u} > 2$;

 $u_n > 2 \Rightarrow u_{n+1} = \frac{6}{1 + u} < 2$ Combining the two cases we get

$$u_n < 2 \Rightarrow u_n < 2 < u_{n+1}; u_n > 2 \Rightarrow u_{n+1} < 2 < u_n \dots (i)$$

$$u_{n+2} - u_n = \frac{6(1 + u_n)}{7 + u_n} - u_n = \frac{6 - u_n - u_n^2}{7 + u_n} = \frac{(2 - u_n)(3 + u_n)}{7 + u_n}$$

$$u_n < 2 \Rightarrow u_n < u_{n+2}; u_n > 2 \Rightarrow u_n > u_{n+2}....(ii)$$

Case 1: Let $u_1 < 2$. Then $u_2 > 2$

From (i)
$$u_1 < 2 \Rightarrow u_1 < 2 < u_2; u_2 > 2 \Rightarrow u_3 < 2 < u_2; u_3 < 2 \Rightarrow u_3 < 2 < u_4; u_4 > 2 \Rightarrow u_5 < 2 < u_4;$$

From (ii) $u_1 < 2 \Rightarrow u_1 < u_3$; $u_3 < 2 \Rightarrow u_3 < u_5$;

$$u_2 > 2 \Rightarrow u_2 > u_4; u_4 > 2 \Rightarrow u_4 > u_6; \dots$$

Therefore $u_1 < u_3 < u_5 < \dots < u_6 < u_4 < u_2$

This shows that the sequence $\{u_{2n-1}\}$ is a monotone increasing sequence, bounded above and the sequence $\{u_{2n}\}$ is a monotone decreasing sequence, bounded below. Hence both the subsequences are convergent.

Let
$$\lim_{n \to \infty} u_{2n-1} = l$$
, $\lim_{n \to \infty} u_{2n} = m$. From the relation we have $u_{2n} = \frac{6}{1 + u_{2n-1}}$, $u_{2n+1} = \frac{6}{1 + u_{2n}}$ for all $n \in \mathbb{N}$

Taking limit as $n \to \infty$, we have $m = \frac{6}{1+l}$, $l = \frac{6}{1+m}$. Therefore l = m and the sub-

sequences $\{u_{2n-1}\}$ and $\{u_{2n}\}$ converges to a common limit.

Case 2: $u_1 > 2$

From (i) and (ii) we get $u_2 < u_4 < u_6 < \dots < u_5 < u_3 < u_1$.

This shows that the sequence $\{u_{2n-1}\}$ is a monotone decreasing sequence, bounded above and the sequence $\{u_{2n}\}$ is a monotone increasing sequence, bounded below. Hence both the subsequences are convergent.

Let
$$\lim_{n \to \infty} u_{2n-1} = l$$
, $\lim_{n \to \infty} u_{2n} = m$. From the relation we have $u_{2n} = \frac{6}{1 + u_{2n-1}}$, $u_{2n+1} = \frac{6}{1 + u_{2n}}$ for all $n \in \mathbb{N}$

Taking limit as $n \to \infty$, we have $m = \frac{6}{1+l}$, $l = \frac{6}{1+m}$. Therefore l = m and the sub-

sequences $\{u_{2n-1}\}$ and $\{u_{2n}\}$ converges to a common limit,

(ii) Let the limit be
$$l$$
. We have $u_{n+1} = \frac{6}{1+u_n}$ for all $n \in \mathbb{N}$. Taking limit as $n \to \infty$, we have $l = \frac{6}{1+l}$. This gives $l = 2$ or $l = -3$.

Since $\{u_n\}$ is a sequence of +ve real numbers therefore $l \neq -3$. Therefore l=2

Ex 5: A sequence $\{x_n\}$ is defined as follows $x_2 \le x_4 \le x_6 \le \dots \le x_5 \le x_3 \le x_1$ and $\{y_n\}$ be defined by $y_n = x_{2n-1} - x_{2n}$ such that $y_n \to 0$ as $n \to \infty$. Show that $\{x_n\}$ is convergent.

CU'2005

Clearly $\{x_{2n}\}$ is a monotone increasing sequence bounded above $(x_1$ is an upper bound). Also the sequence $\{x_{2n-1}\}$ is a monotone decreasing sequence bounded below $(x_2$ is a lower bound). Thus the two subsequences $\{x_{2n}\}$ and $\{x_{2n-1}\}$ are convergent

Again since $y_n \to 0$ as $n \to \infty \Rightarrow \lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n-1}$

Thus the two subsequences $\{x_{2n}\}$ and $\{x_{2n-1}\}$ are convergent to the same limit

 $\Rightarrow \{x_n\}$ is convergent

Ex 6: $\{x_n\}$ and $\{y_n\}$ are bounded sequences and a sequence $\{z_n\}$ is defined

by $z_1 = x_1, z_2 = y_2, z_3 = x_2, z_4 = y_2, z_5 = x_3, z_6 = y_3, \dots$ Prove that the sequence $\{z_n\}$ is convergent iff both the sequences $\{x_n\}$ and $\{y_n\}$ are convergent with the same limit.

Clearly $\{z_{2n-1}\} = \{x_n\}$ and $\{z_{2n}\} = \{y_n\}$

Let $\{z_n\}$ is convergent. Then both the sub-sequences $\{z_{2n-1}\}$ and $\{z_{2n}\}$ of the sequence $\{z_n\}$ are convergent with the same limit

 \Rightarrow Both the sequences $\{x_n\}$ and $\{y_n\}$ are convergent with the same limit

Conversely, let both the sequences $\{x_n\}$ and $\{y_n\}$ are convergent with the same limit

- \Rightarrow Both the sub-sequences $\{z_{2n-1}\}$ and $\{z_{2n}\}$ of the sequence $\{z_n\}$ are convergent with the same limit
- \Rightarrow The sequence $\{z_n\}$ is convergent

Thus the sequence $\{z_n\}$ is convergent iff both the sequences $\{x_n\}$ and $\{y_n\}$ are convergent with the same limit

Theorem: Every sequence of real numbers has a monotone subsequence.

Proof: Let $\{u_n\}$ be a sequence of real numbers. An element u_k is said to be a peak of the sequence $\{u_n\}$ if $u_k \ge u_n$ for all n > k, i.e., u_k is greater than or equal to all subsequent elements beyond, u_k . A sequence may or may not have a peak or else it may have a finite or an infinite number of peaks.

We consider the following cases.

Case1: Let the sequence $\{u_n\}$ have infinitely many peaks.

Then $u_{r_1} \ge u_{r_2} \ge u_{r_3} \dots$

The subsequence $\{u_{r_1}, u_{r_2}, u_{r_3}, \dots\}$ is a monotone decreasing sequence.

Case2: Let the sequence have either no peak or a finite number of peaks.

Let the peaks be arranged in ascending order of the subscripts as u_n, u_n, \dots, u_r . Let $s_1 = r_m + 1$.

Then u_{s_1} is not a peak and there is no peak beyond the element u_{s_1} .

Since u_{s_1} is not a peak, there is an $s_2 \in \mathbb{N}$ with $s_2 > s_1$ such that $u_{s_2} > u_{s_1}$.

Since u_{s_3} is not a peak, there is an $s_3 \in \mathbb{N}$ with $s_3 > s_2$ such that $u_{s_3} > u_{s_2}$.

Proceeding thus we obtain natural numbers s_i such that $s_1 < s_2 < s_3 < \dots$

and $u_{s_1} < u_{s_2} < u_{s_3} < \dots$

Clearly, the subsequence $\{u_{s_n}\}$ is a monotone increasing sequence of the sequence $\{u_n\}$.

This completes the proof.

<u>Sub sequential limit</u>: Let $\{u_n\}$ be a real sequence. A real number l is said to be a sub sequential limit of the sequence $\{u_n\}$ if there exists a subsequence of $\{u_n\}$ that converges to l.

Theorem: A real number l is a sub-sequential limit of a sequence $\{u_n\}$ if and only if every neighbourhood of l contains infinitely many elements of the sequence $\{u_n\}$.

Bolzano-Weierstrass theorem: Every bounded sequence of real numbers has a convergent subsequence. VU'2002, 06, CU'2001, 03

Proof: Let $\{u_n\}$ be a bounded sequence. Then there is a closed and bounded interval, say I = [a,b], such that $u_n \in I$ for every $n \in \mathbb{N}$.

Let $c = \frac{a+b}{2}$ and I' = [a,c], I'' = [c,b]. Then at least one of the intervals I' and I'' contains infinitely many elements of $\{u_n\}$.

Let $I_1 = [a_1, b_1]$ be one such interval. Then $I_1 \subset I$ and $|I_1|$ = the length of the interval = $\frac{1}{2}(b-a)$.

Let $c_1 = \frac{a_1 + b_1}{2}$ and $I_1' = [a_1, c_1]$, $I_1'' = [c_1, b_1]$. Then at least of the intervals contains infinitely many elements of $\{u_n\}$. Let $I_2 = [a_2, b_2]$ be such an interval.

Then $I_2 \subset I_1$ and $|I_2| = \frac{1}{2} |I_1|$.

Continuing thus, we obtain a sequence of closed and bounded intervals $\{I_n\}$ such that

(i) $I_{n+1} \subset I_n$ for all $n \in \mathbb{N}$.

(ii) $|I_n| = \frac{1}{2^n} (b-a)$ and therefore $\lim_{n \to \infty} |I_n| = 0$; and

(iii) each I_n contains infinitely many elements of $\{u_n\}$.

By Cantor's theorem on nested intervals, there exists a unique point α such that $\alpha \in \bigcap_{n=1}^{\infty} I_n$.

We prove that α is a sub sequential limit of the sequence $\{u_n\}$.

Let us choose $\varepsilon > 0$. There exists a natural number k such that $0 < \frac{b-a}{2^k} < \varepsilon$. That is, $|I_k| < \varepsilon$

Since $\alpha \in I_k$ and $|I_k| < \varepsilon$, I_k is contained in the neighbourhood $(\alpha - \varepsilon, \alpha + \varepsilon)$ and consequently, the ε -neighbourhood of α contains infinitely many elements of $\{u_n\}$.

Since ε is arbitrary, each neighbourhood of α contains infinitely many elements of $\{u_n\}$. Therefore α is a sub sequential limit of $\{u_n\}$.

Therefore there exists a subsequence of $\{u_n\}$ that converges to α . In other words, $\{u_n\}$ has a convergent subsequence.

<u>Definition:</u> Let $\{u_n\}$ be a bounded sequence of real numbers. The greatest sub sequential limit of $\{u_n\}$ is said to be the **upper limit** or the **limit superior** of $\{u_n\}$ and this is denoted by $\overline{\lim} u_n$ or

 $\lim_{n\to\infty} \sup u_n$. The least sub sequential limit of $\{u_n\}$ is said to be the **lower limit** or the **limit** inferior of $\{u_n\}$ and this is denoted by $\underline{\lim} u_n$ or $\lim_{n\to\infty} \inf u_n$.

If $\{u_n\}$ is unbounded above then we define $\overline{\lim}u_n = \infty$.

If $\{u_n\}$ is unbounded below then we define $\underline{\lim}u_n = -\infty$.

Examples:

1. Let $u_n = (-1)^n \left(1 + \frac{1}{n}\right)$, $n \ge 1$. Then the sequence $\{u_n\}$ is bounded sequence. $\overline{\lim} u_n = 1$, $\underline{\lim} u_n = -1$.

<u>2</u>: Let $u_n = \frac{1}{n}$, $n \ge 1$. Then the sequence $\{u_n\}$ is bounded sequence. $\overline{\lim} u_n = \underline{\lim} u_n = 0$.

3: Let $u_n = (-1)^n n^2$, $n \ge 1$. Then the sequence $\{u_n\}$ is unbounded above and unbounded below. $\overline{\lim} u_n = \infty$, $\underline{\lim} u_n = -\infty$.

<u>4:</u> Let $u_n = n^{(-1)^n \cdot n}$, $n \ge 1$. Then the sequence $\{u_n\}$ is unbounded above and bounded below. $\overline{\lim} u_n = \infty$, $\underline{\lim} u_n = 0$.

Ex 7: Find the upper and lower limit of the sequence $\{a_n\}$ where $a_n = (-1)^n \left(1 + \frac{1}{n}\right) (n = 1, 2, 3,)$. Find a sub-sequence of this sequence that converges to the lower limit.

Ex 8: Find the upper and lower limit of the sequence $\{a_n\}$ where $a_n = \left(1 - \frac{1}{n^2}\right) \sin \frac{n\pi}{2}$. Find a sub-sequence of this sequence that converges to the lower limit.

VU'2004, CU'1999, 01, 07

Properties of Upper limit and Lower limit:

Let $\{u_n\}$ be a bounded sequence and $u^* = \overline{\lim} u_n$, $u_* = \underline{\lim} u_n$.

The upper limit u^* satisfies the following conditions: For each positive ε ,

- (i) $u_n > u^* \varepsilon$ For infinitely many values of n, and
- (ii) There exists a natural number k such that $u_n < u^* + \varepsilon$ for all $n \ge k$.

The lower limit u_* satisfies the following conditions:

For each positive ε ,

- (i) $u_n < u_* + \varepsilon$ For infinitely many values of n, and
- (ii) There exists a natural number k such that $u_n > u_n \varepsilon$ for all $n \ge k$.

<u>Theorem:</u> Let $\{u_n\}$ is a sequence of real numbers. Then $\underline{\lim}u_n \leq \overline{\lim}u_n$ CU'2002

Let
$$\underline{\lim} u_n = u_*, \overline{\lim} u_n = u^*$$

If possible let the statement be not true i.e. $u_* > u^*$. Then $u_* - u^* > 0$

Choose
$$\varepsilon = \frac{1}{2} (u_* - u^*) \Rightarrow u^* + \varepsilon = u_* - \varepsilon$$