Course Type-Core-3
Course Type-Core-3
Course Title-C3T: Real Analysis
Topic: Sub sequence.

References: S. K. Mapa Book.

Date: 23.04, 2020

— Stamth Nath Achapa.

By the definition of u_n , there exists only finite number of terms of $\{u_n\}$ less than $u_n - \varepsilon$

Again by the definition of u^* there are infinite number of terms of $\{u_n\} < u^* + \varepsilon (= u_* - \varepsilon)$

The two statements are clearly contradicting each other. Therefore $u_* > u^*$ does not hold therefore $u_* \le u^* \Rightarrow \underline{\lim} u_n \le \overline{\lim} u_n$

Theorem: A bounded sequence $\{u_n\}$ is convergent if and only if $\overline{\lim} u_n = \underline{\lim} u_n$

VU'2004, CU'2005, 07

Proof: Let $\{u_n\}$ be a convergent sequence and $\lim_{n\to\infty} u_n = l$.

Since $\{u_n\}$ is convergent, every subsequence of $\{u_n\}$ converges to l. Therefore l is the greatest as well as the least subsequential limit. That is, $\overline{\lim} u_n = \underline{\lim} u_n$.

Conversely, let $\{u_n\}$ be a bounded sequence such that $\overline{\lim} u_n = \underline{\lim} u_n$

Let $\overline{\lim} u_n = \underline{\lim} u_n = l$.

Let us choose $\varepsilon > 0$.

Since $\overline{\lim} u_n = l$, there exists a natural number k_n such that

 $u_n < l + \varepsilon$ for all $n \ge k_1$.

Since $\underline{\lim} u_n = l$, there exists a natural number k_2 such that

 $u_n > l - \varepsilon$ for all $n \ge k_2$.

Let $k = \max\{k_1, k_2\}$.

Then $l-\varepsilon < u_n < l+\varepsilon$ for all $n \ge k$ i.e., $|u_n - l| < \varepsilon$ for all $n \ge k$

This proves that $\lim u_n = 1$.

In other words, the sequence $\{u_n\}$ is convergent.

Theorem: Let $\{u_n\}$ and $\{v_n\}$ be bounded sequences. Then

(i)
$$\overline{\lim} u_n + \overline{\lim} v_n \ge \overline{\lim} (u_n + v_n)$$

VU'2002

(ii)
$$\underline{\lim} u_n + \underline{\lim} v_n \le \underline{\lim} (u_n + v_n)$$
.

CU'1998

toomeyin out y

Proof: (i) Since $\{u_n\}$ and $\{v_n\}$ are both bounded sequences, the sequence $\{u_n + v_n\}$ is a bounded sequence.

Let $\overline{\lim} u_n = l_1$, $\overline{\lim} v_n = l_2$, $\overline{\lim} (u_n + v_n) = p$.

Let us choose $\varepsilon > 0$.

Since $\overline{\lim} u_n = l_1$, there exists a natural number k_1

Such that $u_n < l_1 + \frac{\varepsilon}{2}$ for all $n \ge k_1$.

Since $\overline{\lim}_{n} = l_2$, there exists a natural numbers k_2

Such that $v_n < l_2 + \frac{\varepsilon}{2}$ for all $n \ge k_2$.

Let $k = \max\{k_1, k_2\}$.

Then $u_n < l_1 + \frac{\varepsilon}{2}$ and $v_n < l_2 + \frac{\varepsilon}{2}$ for all $n \ge k$

So $u_n + v_n < l_1 + l_2 + \varepsilon$ for all $n \ge k$

It follows that no sub sequential limit of $\{u_n + v_n\}$ can be greater than $l_1 + l_2 + \varepsilon$. Since $\varepsilon (>0)$ is arbitrary, every sub sequential limit $\leq l_1 + l_2$.

Hence $p \le l_1 + l_2$

Note (VU'2002): Strict inequality may occur. For example; if $u_n = \sin \frac{n\pi}{2}$, $n \in \mathbb{N}$; $v_n = \cos \frac{n\pi}{2}$, $n \in \mathbb{N}$

then

$$\underline{\lim} (u_n + v_n) = -1, \ \underline{\lim} u_n = -1, \ \underline{\lim} v_n = -1.$$

$$\frac{\underline{\underline{\underline{}}}}{\overline{\lim}} (u_n + v_n) = 1 , \overline{\lim} u_n = 1, \overline{\lim} v_n = 1.$$

So in this case $\underline{\lim} u_n + \underline{\lim} v_n < \underline{\lim} \left(u_n + v_n \right)$ and $\overline{\lim} u_n + \overline{\lim} v_n > \overline{\lim} \left(u_n + v_n \right)$.

Theorem(Cauchy's general principle of convergence): A necessary and sufficient condition for the convergence of a sequence $\{u_n\}$ is that for a pre-assigned positive ε there exists a natural number k such that $|u_{n+p} - u_n| < \varepsilon$ for all $n \ge k$ and for $p = 1, 2, 3, \dots$

Proof: Let $\{u_n\}$ be convergent and $\lim u_n = l$.

Let $\varepsilon > 0$

Then there exists a natural number k such that $|u_n - l| < \frac{\varepsilon}{2}$ for all $n \ge k$.

Therefore $|u_{n+p}-l|<\frac{\varepsilon}{2}$ for all $n\geq k$ and $p=1,2,3,\ldots$

Now
$$|u_{n+p} - u_n| \le |u_{n+p} - l| + |u_n - l|$$

$$<\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 for all $n \ge k$ and $p = 1, 2, 3, \dots$

This proves that the condition is necessary.

We now prove that the sequence $\{u_n\}$ is convergent under the stated condition. First we prove that the sequence $\{u_n\}$ is bounded.

Let $\varepsilon = 1$. Then there exists a natural number k such that $|u_{n+p} - u_n| < 1$ for all $n \ge k$ and

$$p = 1, 2, 3, \dots$$

Therefore
$$|u_{k+p} - u_k| < 1$$
 for $p = 1, 2, 3, \dots$

Or,
$$u_k - 1 < u_{k+p} < u_k + 1$$
 for $p = 1, 2, 3, \dots$

Let
$$B = \max\{u_1, u_2, \dots, u_k, u_k + 1\}$$
 and $b = \min\{u_1, u_2, \dots, u_k, u_k - 1\}$.

Then $b \le u_n \le B$ for all $n \in \mathbb{N}$

This proves that $\{u_n\}$ is a bounded sequence.

By Bolzano-Weierstrass theorem, the sequence $\{u_n\}$ has a convergent subsequence. Let l be a limit of that subsequence. Then l is a sub sequential limit of $\{u_n\}$.

Let $\varepsilon > 0$. Then by the given condition, there exists a natural number m such that $|u_{n+p} - u_n| < \frac{\varepsilon}{2}$ for all $n \ge m$ and $p = 1, 2, 3, \dots$

Taking m = n, it follows that $\left| u_{m+p} - u_m \right| < \frac{\varepsilon}{3}$ for $p = 1, 2, 3, \dots$ (1)

Since l is a sub sequential limit of $\{u_n\}$, each ε -neighbourhood of l contains infinite number of elements of $\{u_n\}$. Therefore there exists a natural number q > m such that $|u_q - l| < \frac{5}{3}$.

As q > m, it follows from (1) that $\left| u_q - u_m \right| < \frac{\mathcal{E}}{2}$.

Now
$$|u_{q+m} - l| \le |u_{m+p} - u_m| + |u_m - u_q| + |u_q - l|$$

 $< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \text{ for } p = 1, 2, 3, \dots$

Therefore $|u_n - l| < \varepsilon$ for all $n \ge m + 1$

Since ε is arbitrary, the sequence $\{u_n\}$ converges to l.

In other words, $\{u_n\}$ is a convergent sequence. This completes the proof.

Ex 9: Use Cauchy's general principle of convergence to prove that the sequence $\left\{\frac{n}{n+1}\right\}$ is convergent. CU'2001

Let
$$u_n = \frac{n}{n+1}$$
. Let p be a natural number.

Then
$$u_{n+p} = \frac{n+p}{n+p+1}$$

$$\begin{aligned} |u_{n+p} - u_n| &= \left| \frac{n+p}{n+p+1} - \frac{n}{n+1} \right| \\ &= \frac{p}{(n+p+1)(n+1)} \\ &< \frac{1}{n+1} < \frac{1}{n} \text{ for all } p \text{, since } \frac{p}{n+p+1} < 1 \text{ for all } p. \end{aligned}$$

Let $\varepsilon > 0$. Then $\frac{1}{n} < \varepsilon$ holds for $n > \frac{1}{\varepsilon}$

Let $m = \left| \frac{1}{\varepsilon} \right| + 1$. Then m is a natural number and $\left| u_{n+p} - u_n \right| < \varepsilon$ for all $n \ge m$ and $p = 1, 2, 3, \dots$

This proves that the sequence $\{u_n\}$ is convergent.

Ex 10: Use Cauchy's general principle of convergence to prove that the sequence $\{u_n\}$ where

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
, is not convergent.

CU'2004

Let p be a natural number.

$$|u_{n+p}-u_n|=\frac{1}{n+1}+\frac{1}{n+2}+\dots+\frac{1}{n+p}.$$

Let us choose n=m and p=m.

Then
$$|u_{2m} - u_m| = \frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{2m}$$

$$>\frac{1}{2m}+\frac{1}{2m}+\dots+\frac{1}{2m}=\frac{1}{2}.$$

If we choose $\varepsilon = \frac{1}{2}$ then no natural number k can be found such that $|u_{n+p} - u_n| < \varepsilon$ will hold for all $n \ge k$ and for every natural number p.

This shows that Cauchy condition is not satisfied by the sequence and the sequence $\{u_n\}$ is not convergent.

Cauchy sequence (CU'1997, 02, 07): A sequence $\{u_n\}$ is said to be a Cauchy sequence if for a pre-assigned positive ε there exists a natural number k such that $|u_m - u_n| < \varepsilon$ for all $m, n \ge k$.

Replacing m by n+p where p=1,2,3,... the above condition can be equivalently stated as $|u_{n+p}-u_n|<\varepsilon$ for all $n\geq k$ and p=1,2,3,...

Theorem: A Cauchy sequence of real numbers is convergent.

VU'2004

Proof: Let $\{u_n\}$ be a Cauchy sequence. First we prove that the sequence $\{u_n\}$ is bounded. Let $\varepsilon = 1$. Then there exists a natural number k such that $|u_m - u_n| < 1$ for all $m, n \ge k$.

Therefore $|u_k - u_n| < 1$ for all $n \ge k$

Or, $u_k - 1 < u_n < u_k + 1$ for all $n \ge k$

Let $B = \max \{u_1, u_2, \dots, u_k - 1, u_k + 1\}$,

 $b = \min \{u_1, u_2, \dots, u_k - 1, u_k + 1\}.$

Then $b \le u_n \le B$ for all $n \in \mathbb{N}$ and this proves that the sequence $\{u_n\}$ is bounded. By Bolzano-Weierstrass theorem, $\{u_n\}$ has a convergent subsequence.

Let l be the limit of that convergent subsequence. Then l is a sub sequential limit of $\{u_n\}$. We now prove that the sequence $\{u_n\}$ converges to l.

Let us choose $\varepsilon > 0$. There exists a natural number k such that $|u_m - u_n| < \frac{\varepsilon}{2}$ for all $m, n \ge k$

(1) Since l is a sub sequential limit of $\{u_n\}$, there exists a natural number q > k such that

$$\left|u_{q}-l\right|<\frac{\varepsilon}{2}.$$

Since q > k, from (1) $\left| u_q - u_n \right| < \frac{\varepsilon}{2}$ for all $n \ge k$.

Now $|u_n - l| \le |u_n - u_q| + |u_q - l|$

$$<\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 for all $n \ge k$.

That is, $|u_n - l| < \varepsilon$ for all $n \ge k$.

This implies $\lim_{n \to \infty} u_n = l$. In other words, the sequence $\{u_n\}$ is convergent.

Ex 11: Show that every Cauchy sequence is bounded

<u>Hints:</u> Let $\{u_n\}$ is a Cauchy sequence. Then $\{u_n\}$ is convergent

Then prove the theorem that every convergent sequence is bounded

Theorem: A convergent sequence is a Cauchy sequence.

CU'2006

DE

<u>Proof:</u> Let $\{u_n\}$ be a convergent sequence and let $\lim_{n\to\infty} u_n = l$.

Let us choose $\varepsilon > 0$. Then there exists a natural number k such that $|u_n - l| < \frac{\varepsilon}{2}$ for all $n \ge k$.

If m, n be natural numbers $\geq k$, then $|u_m - l| < \frac{\varepsilon}{2}$ and $|u_n - l| < \frac{\varepsilon}{2}$.

Now $|u_m - u_n| \le |u_m - l| + |u_n - l| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ for all $m, n \ge k$

That is, $|u_m - u_n| < \varepsilon$ for all $m, n \ge k$.

This proves that the sequence $\{u_n\}$ is a Cauchy sequence.

Ex 12: Prove that the sequence $\left\{\frac{1}{n}\right\}$ is a Cauchy sequence.

Let $u_n = \frac{1}{n}$. Let us choose a positive ε . By Archimedean property there exists a positive number $k\varepsilon > 2$.

Then $|u_m - u_n| = \left| \frac{1}{m} - \frac{1}{n} \right| \le \frac{1}{m} + \frac{1}{n} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ if $m, n \ge k$

This proves that the sequence $\{u_n\}$ is a Cauchy sequence.

Ex 13: Prove that the sequence $\left\{\frac{1}{n+1}\right\}$ is a Cauchy sequence.

CU'1997

(H.W.)

Ex 14: Prove that the sequence $\{u_n\}$ where $u_n = \frac{n+1}{n}$, $n \in \mathbb{N}$ is a Cauchy sequence.

CU'2008

(H.W.)

Ex 15: Prove that $\{2^n\}$ is not a Cauchy sequence.

VU'2002, CU'2007

Let $u_n = 2^n$ for $n \in \mathbb{N}$

Then
$$\left| u_{n+p} - u_n \right| = \left| 2^{n+p} - 2^n \right| = 2^n \left| 2^p - 1 \right| \ge 2^n \ge 2$$

Let $\varepsilon = 1$. Then for this chosen ε there does not exists a natural number k such that $\left|u_{n+p} - u_n\right| < \varepsilon$ for

 $\Rightarrow \{2^n\} \text{ is not a Cauchy sequence}$

Ex 16: Prove that the sequence $\{(-1)^n\}$ is not a Cauchy sequence.

Let $u_n = (-1)^n$.

Then
$$|u_m - u_n| = |(-1)^m - (-1)^n|$$

 $|u_m - u_n| = 0$ if m and n are both even or both odd,

 $|u_m - u_n| = 2$ if one of m, n is odd and the other is even.

Let us choose $\varepsilon = 1$. Then it is not possible to find a natural number k such that $|u_m - u_n| < \varepsilon$ for all $m, n \ge k$.

Hence $\{u_n\}$ is not a Cauchy sequence.

Ex 17: Discuss the convergence of
$$\left\{\frac{n-1}{2n}\right\}$$

VU'2009

$$\underline{\text{Hints:}} \left| u_{n+p} - u_n \right| = \frac{p}{2n(n+p)} < \frac{1}{2n}$$

Ex 18: Prove that the sequence $\{u_n\}$ where $u_1 = 0$, $u_2 = 1$ and $u_{n+2} = \frac{1}{2}(u_{n+1} + u_n)$ for all $n \ge 1$ is a Cauchy sequence.

$$u_{n+2} - u_{n+1} = \frac{1}{2} (u_{n+1} + u_n) - u_{n+1} = -\frac{1}{2} (u_{n+1} - u_n)$$

Or,
$$|u_{n+2} - u_{n+1}| = \frac{1}{2} |u_{n+1} - u_n| = \frac{1}{2^2} |u_n - u_{n-1}| = \dots = \frac{1}{2^n} |u_2 - u_1| = \frac{1}{2^n}$$

Let m > n. Then

$$|u_{m} - u_{n}| \le |u_{m} - u_{m-1}| + |u_{m-1} - u_{m-2}| + \dots + |u_{n+1} - u_{n}|$$

$$= \left(\frac{1}{2}\right)^{m-2} + \left(\frac{1}{2}\right)^{m-3} + \dots + \left(\frac{1}{2}\right)^{n-1}$$

$$= \frac{4}{2^{n}} \left[1 - \left(\frac{1}{2}\right)^{m-n}\right] < \frac{4}{2^{n}}$$

Let $\varepsilon > 0$. Then there exists a natural number k such that $\frac{4}{2^n} < \varepsilon$ for all $n \ge k$

Hence $|u_m - u_n| < \varepsilon$ for all $m, n \ge k$

 \Rightarrow This proves that the sequence $\{u_n\}$ is a Cauchy sequence.

Ex.19: Prove that the sequence $\{u_n\}$ satisfying the condition $|u_{n+2} - u_{n+1}| \le c |u_{n+1} - u_n|$ for all $n \in \mathbb{N}$, where 0 < c < 1 is a Cauchy sequence.

$$|u_{n+2} - u_{n+1}| \le c |u_{n+1} - u_n| \le c^2 |u_n - u_{n-1}| \le \dots \le c^n |u_2 - u_1|$$

Let m > n. Then

$$\begin{aligned} |u_{m} - u_{n}| &\leq |u_{m} - u_{m-1}| + |u_{m-1} - u_{m-2}| + \dots + |u_{n+1} - u_{n}| \\ &\leq |u_{2} - u_{1}| \left\{ c^{m-2} + c^{m-3} + \dots + c^{n-1} \right\} \\ &= |u_{2} - u_{1}| c^{n-1} \frac{1 - c^{m-n}}{1 - c} < \frac{c^{n-1}}{1 - c} |u_{2} - u_{1}| \end{aligned}$$

Let $\varepsilon > 0$. Since 0 < c < 1, the sequence $\{c^{n-1}\}$ is a convergent sequence. Therefore there exists a natural

number k such that $c^{n-1} < \frac{1-c}{|u_2-u_1|} \varepsilon$ for all $n \ge k$

Hence $|u_m - u_n| < \varepsilon$ for all $m, n \ge k$

 \Rightarrow This proves that the sequence $\{u_n\}$ is a Cauchy sequence.

Ex 20: Let $u_1 = 2$ and $u_{n+1} = 2 + \frac{1}{u_n}$ for $n \ge 1$. Prove that the sequence $\{u_n\}$ converge to the limit $\sqrt{2} + 1$

Hints: Clearly $\{u_n\}$ is a sequence of +ve real numbers and $u_n > 2$ for all n > 1.

Now
$$|u_{n+2} - u_{n+1}| = \left| \frac{1}{u_{n+1}} - \frac{1}{u_n} \right| = \frac{|u_{n+1} - u_n|}{u_{n+1}u_n} < \frac{1}{4} |u_{n+1} - u_n|$$

Proceeding similar as the previous problem show that $\{u_n\}$ is a Cauchy sequence

 $\Rightarrow \{u_n\}$ is convergent

Let $\lim_{n\to\infty} u_n = l$. From the given relation $\lim_{n\to\infty} u_{n+1} = 2 + \lim_{n\to\infty} \frac{1}{u_n}$

$$\Rightarrow l = 2 + \frac{1}{l}$$
 This gives $l = 1 \pm \sqrt{2}$

Since $\{u_n\}$ is a sequence of +ve real numbers $l \neq 1 - \sqrt{2} \implies l = 1 + \sqrt{2}$

Ex 21: Let $u_1 > 0$ and $u_{n+1} = \frac{1}{2 + u_n}$ for $n \ge 1$. Prove that the sequence $\{u_n\}$ converges to the limit $\sqrt{2} - 1$

(H.W.)

Ex 22: Let $\{u_n\}$ is a Cauchy sequence in \mathbb{R} having a sub-sequence converging to a real number l, prove that $\lim_{n\to\infty} u_n = l$

Since $\{u_n\}$ is a Cauchy sequence in \mathbb{R} it is convergent

 \Rightarrow Every sub-sequence of $\{u_n\}$ converge to the limit of this sequence

Since a sub-sequence of $\{u_n\}$ converge to $l \Rightarrow \lim_{n \to \infty} u_n = l$

Ex 23: Let $\{x_n\}$ be a Cauchy sequence in \mathbb{R} and $\{y_n\}$ is a sequence in \mathbb{R} such that $|x_n - y_n| < \frac{1}{n}$ for all $n \ge 1$.

Prove that $\{y_n\}$ is a Cauchy sequence and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$

Since $\{x_n\}$ be a Cauchy sequence in $\mathbb{R} \Rightarrow \{x_n\}$ is convergent.

Let $\varepsilon > 0$ then by Archimedean property there exists a natural number k such

that $k\varepsilon > 1 \Rightarrow \frac{1}{k} < \varepsilon \Rightarrow \frac{1}{n} < \varepsilon$ for all $n \ge k$

Thus for every +ve ε there exists a natural number k such that $|(x_n - y_n) - 0| < \varepsilon$ for all $n \ge k$

$$\Rightarrow \lim_{n \to \infty} (x_n - y_n) = 0 \Rightarrow \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$$
$$\Rightarrow \{y_n\} \text{ is convergent in } \mathbb{R}$$
$$\Rightarrow \{y_n\} \text{ is a Cauchy sequence}$$

Theorem (Cauchy's theorem on limits): If $\lim_{n\to\infty} u_n = l$ then $\lim_{n\to\infty} \frac{u_1 + u_2 + \dots + u_n}{n} = l$.

VU'1998, 04, 06, 07, CU'1999, 01

Proof: Case1: l=0.

Since $\{u_n\}$ is a convergent sequence, it is bounded. Therefore there exists a positive number B such that $|u_n| < B$ for all $n \in \mathbb{N}$.

Let $\varepsilon > 0$. Since $\lim_{n \to \infty} u_n = 0$, there exists a natural number k_1 such that $|u_n| < \frac{\varepsilon}{2}$ for all $n \ge k_1$

Now
$$\left| \frac{u_1 + u_2 + \dots + u_n}{n} \right| \le \left| \frac{u_1 + u_2 + \dots + u_{k_1 - 1}}{n} \right| + \left| \frac{u_{k_1} + u_{k_1 + 1} + \dots + u_n}{n} \right|$$

$$\le \left| \frac{|u_1| + |u_2| + \dots + |u_{k_1 - 1}|}{n} \right| + \left| \frac{|u_{k_1}| + |u_{k_1 + 1}| + \dots + |u_n|}{n} \right|$$

$$< \frac{B(k_1 - 1)}{n} + \frac{n - k_1 + 1}{n} \cdot \frac{\varepsilon}{2} \text{ for all } n \ge k_1.$$

Since $\lim_{n\to\infty}\frac{1}{n}=0$, there exists a natural number k_2 such that $\left|\frac{1}{n}-0\right|<\frac{\varepsilon}{2Bk_1}$ for all $n\geq k_2$

I.e.
$$\frac{Bk_1}{n} < \frac{\varepsilon}{2}$$
 for all $n \ge k_2$

Let
$$k = \max\{k_1, k_2\}$$
. Then $\left|\frac{u_1 + u_2 + \dots + u_n}{n}\right| < \varepsilon$ for all $n \ge k$

This proves that $\lim_{n\to\infty} \frac{u_1 + u_2 + \dots + u_n}{n} = 0$

Case2:
$$l \neq 0$$

Let
$$v_n = u_n - l$$
. Then $\lim_{n \to \infty} v_n = 0$

Now
$$\frac{u_1 + u_2 + \dots + u_n}{n} - l = \frac{v_1 + v_2 + \dots + v_n}{n}$$

By case 1,
$$\lim_{n\to\infty} \frac{v_1 + v_2 + \dots + v_n}{n} = 0$$

Therefore
$$\lim_{n\to\infty} \frac{u_1 + u_2 + \dots + u_n}{n} = l$$

<u>Note:</u> The converse of the theorem is not true. Let us consider the sequence $\{u_n\}$ where $u_n = (-1)^n$.

Then $\lim_{n\to\infty} \frac{u_1 + u_2 + \dots + u_n}{n} = 0$ but the sequence $\{u_n\}$ is not convergent.

Corollary: If $\lim_{n\to\infty} u_n = l$ where $u_n > 0$ for all n and $l \neq 0$, then $\lim_{n\to\infty} \sqrt[n]{u_1 u_2 \dots u_n} = l$.

Proof: Let
$$v_n = \log u_n$$
.

Since each u_n is positive and $\lim_{n\to\infty} u_n = l > 0$, the sequence $\{v_n\}$ converges to $\log l$.

By Cauchy's theorem on limit we have,

$$\lim_{n\to\infty}\frac{v_1+v_2+\ldots\ldots+v_n}{n}=\log l.$$

Or,
$$\lim_{n\to\infty} \frac{\log u_1 + \log u_2 + \dots + \log u_n}{n} = \log l$$

Or,
$$\lim_{n\to\infty} \log \sqrt[n]{u_1 u_2 \dots u_n} = \log l$$

It follows that $\lim_{n\to\infty} \sqrt[n]{u_1 u_2 \dots u_n} = l$.

B. Profit Cards

<u>Cesaro's theorem:</u> If the sequences $\{a_n\}$ and $\{b_n\}$ converges to finite limits a and b respectively,

then
$$\lim_{n\to\infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} = ab$$

<u>Proof:</u> Let $a_n = a + \alpha_n$ where $|\alpha_n| \to 0$ as $n \to \infty$

Substituting the values of $a_1, a_2, ..., a_n$ we get

$$\frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = \frac{a(b_1 + b_2 + \dots + b_n)}{n} + \frac{\alpha_1b_n + \alpha_2b_{n-1} + \dots + \alpha_nb_1}{n}$$

$$\Rightarrow \lim_{n \to \infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} = \lim_{n \to \infty} \frac{a \left(b_0 + b_2 + \dots + b_n \right)}{n} + \lim_{n \to \infty} \frac{\alpha_1 b_n + \alpha_2 b_{n-1} + \dots + \alpha_n b_1}{n}$$
(i)

Since $\{b_n\}$ converges to b therefore $\{b_n\}$ is bounded i.e. there exists a +ve real number B such that $|b_n| \le B$ for all $n \in \mathbb{N}$ also by Cauchy's limit theorem $\lim_{n \to \infty} \frac{b_1 + b_2 + \dots + b_n}{n} = b \Longrightarrow$

$$-\lim_{n\to\infty}\frac{a(b_1+b_2+...+b_n)}{n}=ab$$
....(ii)

$$\left| \frac{\alpha_1 b_n + \alpha_2 b_{n-1} + \dots + \alpha_n b_1}{n} \right| \le \frac{B\left(\left| \alpha_1 \right| + \left| \alpha_2 \right| + \dots + \left| \alpha_n \right| \right)}{n}.$$
 (iii)

Now since $|\alpha_n| \to 0$ as $n \to \infty$ then by Cauchy's limit theorem $\lim_{n \to \infty} \frac{|\alpha_1| + |\alpha_2| + \dots + |\alpha_n|}{n} = 0$

From (iii) we get
$$\lim_{n\to\infty} \frac{\alpha_1 b_n + \alpha_2 b_{n-1} + \dots + \alpha_n b_1}{n} = 0$$
.....(iv)

From (i), (ii) and (iv) we get $\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = ab$

Ex 24: Prove that
$$\lim_{n\to\infty} \frac{1+\frac{1}{2}+....+\frac{1}{n}}{n} = 0$$
.

Let
$$u_n = \frac{1}{n}$$
. Then $\lim_{n \to \infty} u_n = 0$

By Cauchy's theorem,
$$\lim_{n\to\infty} \frac{1+\frac{1}{2}+\dots+\frac{1}{n}}{n} = 0$$

Ex 25: Prove that
$$\lim_{n\to\infty} \frac{1+\sqrt{2}+\sqrt[3]{3}+...+\sqrt[n]{n}}{n} = 1$$
.

VU'1997, CU'2004

Let
$$u_n = \sqrt[n]{n}$$
. The

Let
$$u_n = \sqrt[n]{n}$$
. Then $\lim_{n \to \infty} u_n = 1$

By Cauchy's theorem,
$$\lim_{n\to\infty} \frac{1+\sqrt{2}+\sqrt[3]{3}+....+\sqrt[n]{n}}{n} = 1.$$

<u>Theorem:</u> Let $u_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$ (finite or infinite). Then $\lim_{n \to \infty} \sqrt[n]{u_n} = l$

Ex 26: Prove that
$$\lim_{n\to\infty} n^{\frac{1}{n}} = 1$$

Let $u_n = n$. Then $u_n > 0$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = 1 \Rightarrow \lim_{n \to \infty} \sqrt[n]{u_n} = 1$ i.e. $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$

Ex 27: Prove that $\lim_{n\to\infty} \frac{(n!)^{\frac{1}{n}}}{n} = \frac{1}{n}$

Let $u_n = \frac{n!}{n^n}$. Then $u_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \frac{1}{e}$

 $\Rightarrow \lim_{n \to \infty} \sqrt[n]{u_n} = \frac{1}{e} \text{ i.e. } \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} = \frac{1}{e}$

Ex 28: Prove that $\lim_{n\to\infty} \frac{\{(n+1)(n+2)......2n\}^{\frac{1}{n}}}{n} = \frac{4}{n}$

Let $u_n = \frac{(n+1)(n+2)....2n}{n^n}$

Then $u_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \frac{4}{e}$

 $\Rightarrow \lim_{n \to \infty} \sqrt[n]{u_n} = \frac{4}{e} \text{ i.e. } \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} = \frac{4}{e}$