Semester-IV B.Sc (Honours) in Physics

C8T: Mathematical Physics III

Lecture on Eigen-values and Eigenvector

By Dr. K R Sahu Dept. of Physics, Bhatter College

Lecture-V (Specially: Diagonalization of Matrices)

Diagonalization of Matrices

Here we explain how to diagonalize a matrix. We only describe the procedure of diagonalization, and no justification will be given. The process can be summarized as follows. A concrete example is provided below, and several exercise problems has been discussed in this lecture.

Diagonalization Procedure Example of a matrix diagonalization Step 1: Find the characteristic polynomial Step 2: Find the eigenvalues Step 3: Find the eigenspaces Step 4: Determine linearly independent eigenvectors Step 5: Define the invertible matrix S Step 6: Define the diagonal matrix D Step 7: Finish the diagonalization Diagonalization Problems and Examples A Hermitian Matrix can be diagonalized by a unitary matrix More diagonalization problems

The general procedure of the diagonalization is explained in the lecture "How to Diagonalize a Matrix. Step by Step Explanation"

Diagonalization Procedure

Let **A** be the $n \times n$ matrix that you want to diagonalize (if possible).

- 1. Find the characteristic polynomial p(t) of A.
- 2. Find eigen values λ of the matrix **A** and their algebraic multiplicities from the characteristic polynomial **p(t)**.
- 3. For each eigen value λ of A, find a basis of the eigen space E_{λ} .
- 4. If there is an eigen value λ such that the geometric multiplicity of λ , $\dim(E_{\lambda})$, is less than the algebraic multiplicity of λ , then the matrix A is not diagonalizable. If not, A is diagonalizable, and proceed to the next step.
- 5. If we combine all basis vectors for all eigenspaces, we obtained n linearly independent eigenvectors v_1, v_2, \dots, v_n .
- 6. Define the nonsingular matrix $S = [v_1v_2...v_n]$.
- 7. Define the diagonal matrix **D**, whose (\mathbf{i},\mathbf{i}) -entry is the eigen value λ such that the **i**-th column vector $\mathbf{v}_{\mathbf{i}}$ is in the eigen space \mathbf{E}_{λ} .
- 8. Then the matrix **A** is diagonalized as $S^{-1}AS = D$

Example of a matrix diagonalization

Now let us examine these steps with an example. Let us consider the following 3×3 matrix.

$$\mathbf{A} = \begin{bmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{bmatrix}$$

We want to diagonalized matrix if possible.

Step 1: Find the characteristic polynomial

The characteristic polynomial p(t) of A is

P(t) = det (A-tI) =
$$\begin{bmatrix} 4-t & -3 & -3 \\ 3 & -2-t & -3 \\ -1 & 1 & 2-t \end{bmatrix}$$

Using the cofactor expansion, we get $p(t) = -(t-1)^2(t-2)$.

4/13/2020

5

Step 2: Find the eigen values

From the characteristic polynomial obtained in Step 1, we see that eigen values are

 $\lambda = 1$ with algebraic multiplicity 2 and

 λ =2 with algebraic multiplicity 1.

Step 3: Find the eigen spaces

Let us first find the eigen space E_1 corresponding to the eigen value $\lambda=1$. By definition, E_1 is the null space of the matrix

$$A-I = \begin{bmatrix} 3 & -3 & -3 \\ 3 & -3 & -3 \\ -1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

by elementary row operations. Hence if (A-I)x=0(A-I)x=0 for $x \in R3x \in R3$, we have x1=x2+x3

4/13/2020

$$E_1 = N(A - 1) = \left\{ x \in \mathbb{R}^3 \mid x = x_2 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

From this, we see that the set $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ is a basis for the eigen

space E₁.

Thus, the dimension of E_1 , which is the geometric multiplicity of $\lambda=1$, is 2. Similarly, we find a basis of the eigen space $E_2=N(A-2I)$ for the eigen value $\lambda=2$. We have

$$A - 2I = \begin{bmatrix} 2 & -3 & -3 \\ 3 & -4 & -3 \\ -1 & -4 & -3 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

by elementary row operations.

Then if (A-2I)x=0 for $x \in \mathbb{R}^3$, then we have $x_1=-3x_3$ and $x_2=-3x_3$.

$$\mathbf{E}_2 = \mathbf{N}(\mathbf{A} - 2\mathbf{1}) = \left\{ \mathbf{x} \in \mathbf{R}^3 \mid \mathbf{x} = \mathbf{x}_3 \begin{bmatrix} -3\\ -3\\ 1 \end{bmatrix} \right\}$$

4/13/2020

From this we see that the set
$$\left\{ \begin{bmatrix} -3\\ -3\\ 1 \end{bmatrix} \right\}$$

is a basis for the eigen space E_2 and the geometric multiplicity is 1. Since for both eigen values, the geometric multiplicity is equal to the algebraic multiplicity, the matrix **A** is not defective, and hence diagonalizable.

Step 4: Determine linearly independent eigenvectors

From Step 3, the vectors
$$V_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, V_3 = \begin{bmatrix} -3 \\ -3 \\ 1 \end{bmatrix}$$

are linearly independent eigenvectors.

Step 5: Define the invertible matrix S

Define the matrix $S = [v_1 v_2 v_3]$. Thus we have

 $S = \begin{bmatrix} 1 & 1 & -3 \\ 1 & 0 & -3 \\ 0 & 1 & 1 \end{bmatrix}$ and the matrix S is nonsingular (since the column vectors are linearly independent).

Step 6: Define the diagonal matrix D

Define the diagonal matrix
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Note that (1,1)-entry of D is 1 because the first column vector

$$V_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} of S is in the eigen space E_1, that is, v_1 is an$$

eigen vector corresponding to eigen value $\lambda = 1$

Similarly, the (2,2)-entry of D is 1 because the second column

$$V_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} of S is in E_1.$$

The (3,3)-entry of D is 2 because the third column vector

$$V_3 = \begin{bmatrix} -3 \\ -3 \\ 1 \end{bmatrix} of S is in E_2.$$

(The order you arrange the vectors v1,v2,v3 to form S does not matter but once you made S, then the order of the diagonal entries is determined by S, that is, the order of eigenvectors in S.)

4/13/2020

Step 7: Finish the diagonalization

Finally, we can diagonalize the matrix A as $S^{-1}AS = D$, where

$$S = \begin{bmatrix} 1 & 1 & -3 \\ 1 & 0 & -3 \\ 0 & 1 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

If S is orthogonal then $S^{-1} = S^T$

Some problems will be discuss in next class.....

4/13/2020

1