Semester-IV
B. Sc (Honours) in Physics

C8T: Mathematical Physics III

Lecture

on
Eigen-values and Eigenvector

By

Dr. K R Sahu
Dept. of Physics, Bhatter College

Lecture-V

(Specially: Diagonalization of Matrices)

Syllabus

\square Eigen-values and Eigenvectors Cayley-Hamiliton Theorem.
D Diagonalization of Matrices.
Solutions of Coupled Linear Ordinary Differential Equations.
\square Functions of a Matrix.

Diagonalization of Matrices

Here we explain how to diagonalize a matrix. We only describe the procedure of diagonalization, and no justification will be given. The process can be summarized as follows. A concrete example is provided below, and several exercise problems has been discussed in this lecture.

Diagonalization Procedure
 Example of a matrix diagonalization

Step 1: Find the characteristic polynomial
Step 2: Find the eigenvalues
Step 3: Find the eigenspaces
Step 4: Determine linearly independent eigenvectors
Step 5: Define the invertible matrix S
Step 6: Define the diagonal matrix D
Step 7: Finish the diagonalization
Diagonalization Problems and Examples
A Hermitian Matrix can be diagonalized by a unitary matrix
More diagonalization problems

The general procedure of the diagonalization is explained in the lecture "How to Diagonalize a Matrix. Step by Step Explanation"

Diagonalization Procedure

Let \mathbf{A} be the $\mathbf{n} \times \mathbf{n}$ matrix that you want to diagonalize (if possible).

1. Find the characteristic polynomial $\mathbf{p}(\mathbf{t})$ of \mathbf{A}.
2. Find eigen values $\boldsymbol{\lambda}$ of the matrix \mathbf{A} and their algebraic multiplicities from the characteristic polynomial $\mathbf{p (t)}$.
3. For each eigen value $\boldsymbol{\lambda}$ of \mathbf{A}, find a basis of the eigen space $\mathbf{E}_{\boldsymbol{\lambda}}$.
4. If there is an eigen value $\boldsymbol{\lambda}$ such that the geometric multiplicity of $\boldsymbol{\lambda}$, $\operatorname{dim}\left(\mathbf{E}_{\lambda}\right)$, is less than the algebraic multiplicity of $\boldsymbol{\lambda}$, then the matrix \mathbf{A} is not diagonalizable. If not, \mathbf{A} is diagonalizable, and proceed to the next step.
5. If we combine all basis vectors for all eigenspaces, we obtained n linearly independent eigenvectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$.
6. Define the nonsingular matrix $S=\left[\mathbf{v}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}} \ldots \mathbf{v}_{\mathbf{n}}\right]$.
7. Define the diagonal matrix \mathbf{D}, whose (\mathbf{i}, \mathbf{i})-entry is the eigen value $\boldsymbol{\lambda}$ such that the \mathbf{i}-th column vector $\mathbf{v}_{\mathbf{i}}$ is in the eigen space \mathbf{E}_{λ}.
8. Then the matrix \mathbf{A} is diagonalized as $\mathbf{S}^{-1} \mathbf{A S}=\mathbf{D}$

Example of a matrix diagonalization

Now let us examine these steps with an example.
Let us consider the following 3×3 matrix.

$$
A=\left[\begin{array}{ccc}
4 & -3 & -3 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right]
$$

We want to diagonalized matrix if possible.

Step 1: Find the characteristic polynomial

The characteristic polynomial $\mathrm{p}(\mathrm{t})$ of A is
$\mathrm{P}(\mathrm{t})=\operatorname{det}(\mathrm{A}-\mathrm{tI})=\left[\begin{array}{ccc}4-t & -3 & -3 \\ 3 & -2-t & -3 \\ -1 & 1 & 2-t\end{array}\right]$
Using the cofactor expansion, we get

$$
\mathrm{p}(\mathrm{t})=-(\mathrm{t}-1)^{2}(\mathrm{t}-2)
$$

Step 2: Find the eigen values

From the characteristic polynomial obtained in Step 1, we see that eigen values are
$\lambda=1$ with algebraic multiplicity 2 and
$\lambda=2$ with algebraic multiplicity 1 .

Step 3: Find the eigen spaces

Let us first find the eigen space E_{1} corresponding to the eigen value $\lambda=1$. By definition, E_{1} is the null space of the matrix

A-I $=\left[\begin{array}{ccc}3 & -3 & -3 \\ 3 & -3 & -3 \\ -1 & 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
by elementary row operations.
Hence if $(A-I) x=0(A-I) x=0$ for $x \in R 3 x \in R 3$, we have $\mathrm{x} 1=\mathrm{x} 2+\mathrm{x} 3$

$$
E_{1}=N(A-1)=\left\{x \in R^{3} \left\lvert\, x=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right.\right\}
$$

From this, we see that the set

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} \text { is a basis for the eigen }
$$

space E_{1}.

Thus, the dimension of E_{1}, which is the geometric multiplicity of $\lambda=1$, is 2 . Similarly, we find a basis of the eigen space $E_{2}=N(A-2 I)$ for the eigen value $\lambda=2$. We have
$A-2 I=\left[\begin{array}{ccc}2 & -3 & -3 \\ 3 & -4 & -3 \\ -1 & -4 & -3\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$
by elementary row operations.
Then if $(A-2 I) x=0$ for $x \in R^{3}$, then we have
$x_{1}=-3 x_{3}$ and $x_{2}=-3 x_{3}$.

$$
E_{2}=N(A-21)=\left\{x \in R^{3} \left\lvert\, x=x_{3}\left[\begin{array}{c}
-3 \\
-3 \\
1
\end{array}\right]\right.\right\}
$$

From this we see that the set $\left\{\left[\begin{array}{c}-3 \\ -3 \\ 1\end{array}\right]\right\}$
is a basis for the eigen space E_{2} and the geometric multiplicity is 1 .
Since for both eigen values, the geometric multiplicity is equal to the algebraic multiplicity, the matrix \mathbf{A} is not defective, and hence diagonalizable.

Step 4: Determine linearly independent eigenvectors

From Step 3, the vectors

$$
V_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], V_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], V_{3}=\left[\begin{array}{c}
-3 \\
-3 \\
1
\end{array}\right]
$$

are linearly independent eigenvectors.

Step 5: Define the invertible matrix S

Define the matrix $S=\left[v_{1} v_{2} v_{3}\right]$. Thus we have
$S=\left[\begin{array}{ccc}1 & 1 & -3 \\ 1 & 0 & -3 \\ 0 & 1 & 1\end{array}\right]$ and the matrix S is nonsingular (since the column
vectors are linearly independent).

Step 6: Define the diagonal matrix D

Define the diagonal matrix $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
Note that (1,1)-entry of D is 1 because the first column vector
$V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ of S is in the eigen space E_{1}, that is, v_{1} is an
eigen vector corresponding to eigen value $\lambda=1$

Similarly, the (2,2)-entry of D is 1 because the second column

$$
V_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { of } S \text { is in } E_{1}
$$

The (3,3)-entry of \mathbf{D} is 2 because the third column vector

$$
V_{3}=\left[\begin{array}{c}
-3 \\
-3 \\
1
\end{array}\right] \text { of } S \text { is in } E_{2}
$$

(The order you arrange the vectors $\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3$ to form S does not matter but once you made S, then the order of the diagonal entries is determined by S, that is, the order of eigenvectors in S.)

Step 7: Finish the diagonalization

Finally, we can diagonalize the matrix \mathbf{A} as $\mathbf{S}^{-1} \mathbf{A S}=\mathbf{D}$, where
$S=\left[\begin{array}{ccc}1 & 1 & -3 \\ 1 & 0 & -3 \\ 0 & 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$

If S is orthogonal then $\mathrm{S}^{-1}=\mathrm{S}^{\mathrm{T}}$

Some problems will be discuss in next class.....

