Error! No text of specified style in document. | [Type the company name]




Inside a conductor, free charges can move/migrate around in response to EM fields contained

therein, as we saw for the case of the longitudinal E -field inside a current-carrying wire that had a
static potential difference AV across its ends. Even in the static case of electric charge residing on

the surface of a conductor, we saw that E, , (7) =0, but recall that this actually means (as we

showed last semester) that the NET electric field inside the conductor is zero, i.e. E, (F)=0.

n.b. here, we assume {for simplicity’s sake} that the conductor is linear/homogeneous/isotropic
— i.e. no crystalline structure/no anisotropies/no inhomogenities/voids/defects...

From Ohm’s Law, we know that the firee current density J .. (7.1) is proportional to the

(ambient) electric field inside the conductor: |.J free ( ) ( t) where:

o= conductivity of the metal conductor (Sremem/m Ohm™ /m) o =1/p¢

= resistivity of the metal conductor (Ohm-m).

Thus inside such a conductor, we can assume that the linear/homogeneous/isotropic
conducting medium has electric permittivity & and magnetic permeability z . Maxwell’s

equations inside such a conductor {with J, (,¢)#0} are thus:

Using Ohm’s Law:

) [FEFD = p ()] 2 [FB(1) =0 Jylt) =0 E(F.1)

. OB(F 5 5 oF (¥ -
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Electric charge is (always) conserved, thus the continuity equation inside the conductor is:

- 0P e (7 - ~
V'Jﬁ-ee(va)=—%27fM but: |, (7.1)=0-E(F,1)
. 0P, (7.t s
g O'C(V'E(F,t))=—%j;7£w but: V-E(F,r):%;)m(r’,t)

7 F 7 1* order linear

o pree rﬂr ap're r’I apree r.t O, 2 ]

hiiis: cF# ( ) = “ﬁ( ) or: Q_F —C. Bsa (_r,f) =0| & homogeneous
€ ot ot 3 differential equation

The general solution of this differential equation for the free charge density is of the form:

Baa(Bit)=pgFi= 0)e e = P (Fst=0)e™ | ie. a damped exponential !!!

Characteristic damping time: |7, = &/0,. |= charge relaxation time {aka time constant}.

relax
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Thus, the continuity equation VeJ,(7,t)=-0p,,, (7,t)/ét inside a conductor tells us that any
free charge density p,, (F,r = 0) initially present at time 7 = 0 is exponentially damped /

dissipated in a characteristic time |z, = &/0,. | = charge relaxation time {aka time constant},

such that at when: t=7,, =&/0.: |0 (Fil =7, ) = Py (Fo1=0)e" =0.369-p,, (F,1=0)
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Calculation of the Charge Relaxation Time for Pure Copper:

P, =)o, =1.68x107°Q-m| = |0, =1/p,, =5.95x10" Siemens/m

If we assume &, ~3¢&, =3x8.85x10™ F/m for copper metal, then:

relax

TCH =€Cﬂ /O-Cu =pf'u EC!J =4'5><]'0_I9 S€c !!]

However, the characteristic (aka mean} collision time of free electrons in pure copper is

oll oll [ Ci oll -8 . . .
ol =A0 v, where A5 =3.9x107 m = mean free path (between successive collisions) in

pure copper, and v;"  =.[3k,T/m, =12x10° m/sec and thus we obtain: 7. ~3.2x10™" sec.

hermal

= 4.5x107" sec

Hence we see that the calculated charge relaxation time in pure copper, 7,

is < than the calculated collision time in pure copper, 7.1 =3.2x107" sec.

Furthermore, the experimentally measured charge relaxation time in pure copper is

relax

5" (exp't) = 4.0x 10~ sec, which is ~ 5 orders of magnitude larger than the calculated charge

relaxation time 7,5 = 4.5x107" sec. The problem here is that {the macroscopic} Ohm’s Law

is simply out of its range of validity on such short time scales! Two additional facts here are that
both ¢ and o are frequency-dependent quantities { i.e. &= g(a)) and 0. =0, (a)) }, which

becomes increasingly important at the higher frequencies ( f =27/ ~1/7,,, ) associated with

short time-scale, transient-type phenomena!

So in reality, if we are willing to wait a short time (e.g. At ~1ps=10""sec ) then, any initial
free charge density p,,, (7.t =0) accumulated inside a good conductor at ¢ =0 will have

dissipated away/damped out, and from that time onwards, p,, (F,r) =0 can be safely assumed.

Note: For a poor conductor (o —0), then: 7,,, =&/o. — ! Please keep this in mind...

relax
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After many charge relaxation time constants, e.g. 207,
steady-state equations for a goed conductor become {with p, . (7, >Ar)=0 from then onwards}:

<At=1ps=10"sec , Maxwell’s

Maxwell’s equations for a

1) V.E(F’I)=0 2) V.B(F,t)=0 charge-equilibrated conductor
3) vXE(’_’JF—aBgJ) 4) ﬁxg(?’,fﬁ#JCE(F,I)+;J£—GE;:’{)=ﬂ(aCE(F,t)+sDEg:’I)]

These equations are different from the previous derivation(s) of monochromatic plane EM
waves propagating in free space/vacuum and/or in linear/homogeneous/isotropic non-conducting
materials {n.b. only equation 4) has changed}, hence we re-derive {steady-state} wave equations

for E & B from scratch. As before, we apply V x( ) to equations 3) and 4):

. - - - . - - - 0 /= =
Vx(VxE)z——t(VxB) VX(VXB)=ﬂ(0’C(VXE])+€E(VXE)
= = —
- V(,V‘/EI)—V2E=——{#JCE+;1£8—E] =?(ﬁ(§)—v2§=—yacﬁ—ma?
ot Ot ot~
, 0°E oE - 0B 0B
=|\V’E = ue " + u ¢ =V23=/1.€-.‘at2 +f”°'c§
. O°E (F OF (7 . O’ B(F OB (7
Again: |V2E (7.¢) = pe— agf’r)wcrco g:’f) and: VEB(FJ)=M#+P% 1)

Note that the {steady-state} 3-D wave equations for E and B in a conductor have an
additional term that has a single time derivative — which is analogous e.g. to a velocity-dependent

damping term associated with the motion of a 1-D mechanical harmonic oscillator.

The general solution(s) to the above {steady-state} wave equations are usually in the form of
an oscillatory function x a damping term (i.e. a decaying exponential) — in the direction of the

propagation of the EM wave, complex plane-wave type solutions for £ and B associated with
the above wave equation(s) are of the general form:

fe-or)

(7.t)=Be"

B

{fe-ax) and:

~

kxE

(7.1)

)

JEXE:‘(F,t)=[w

=] =

n.b. with {frequency-dependent} complex wave number:

k(0)+ix(@)

k()

and corresponding complex wave vector

k(@)=3m {E(m)}

where: [k(®) = ﬂ{e{f(m)} and |« (@) = Sm{fz((u)}
k:((u) = k(w)k =k(@)Z| (for EM wave propagating in the k = +2 direction, here).
Physically, [k (@) = Re {i; ((o)} is associated with wave propagation, and

is associated with wave attenuation (i.e. dissipation).
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We plug E (7.1)= E:'Ue " and g’(? )= §oe‘-(£_m‘) into their respective wave equations

above, and obtain from each wave equation the same/identical characteristic equation —

{aka a dispersion relation} between complex k ((o) and @ {please work this out yourselves!}:

k2 (0) = pee’® +ipo. o

Thus, since E(w):k((o)ﬁx((o), then:

K’ (w)= (k(a))+ix(a)))

2

=k’ (0)-«k* (0)+2ik(0)x(0) = peo’ +iuc o

If we {temporarily} suppress the  -dependence of complex k (@), this relation becomes:

K =(k+ hc)2 =k’ -k’ +2ikk = pew’ +iuc .o

We can re-write this expression as:

[(Xc2 — K’ ) —,uga)z] +i[2kk - po.w]=0

, which must be true

for any/all values of {any of} the parameters involved. The only in-general way that this relation
can hold is if both [(k2 K’ ) —,uga)z] =0 .and. [2kx - uo.®]=0. Then:

kK’ —x’ = pew’| and: 2kx = po .o

Thus, we have wo separate/independent equations: k* —k* = uew” and: 2kx = puo .. We have

two unknowns: k and x . Hence, we solve these equations simultaneously to determine k and !

From the [atter relation, we see that: |k =1 uo.@/k| Plug this result into the other relation:

K-k =k —(%,un.o'ca)/k)2 =k’ ——(%,uo’ca))2 = e’

Then multiply by &”and rearrange the terms to obtain the following relation:

k4

_(yga)z)kg —(%,uo'ca))2 =0

This may look like a scary equation to try to solve (i.e. a guartic equation - eeekkk!), but it’s
actually just a guadratic equation! {So, it’s really just a leprechaun, masquerading as a unicorn!}

Define: x=k*, a=1, b= —(pz-:a)z) and c=—(% ,uo'ca))2 , this equation then becomes

“the usual” quadratic equation, of the form: ax” +bx +¢ = 0, with solution(s)/root(s):

3 —bFAb* —4ac

2a

X

or ¢ =3 (e 5 (e + (400 |
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This relation can be re-written as:

k”%(ﬂmz) 13 1+>4\ (KJ‘% ) _1

o))

On physical grounds (k* > 0), we must select the + sign, hence:

: 2 . 12
K’ =l(,uga}2) 1+ 1+[$] and thus: k:x/sza}"% 1+ l+[&} =w4/% 1+[&) +1
2 E® 2 E® 2 E@

Having thus solved for & (or equivalently, &%), we can use either of our original twe relations to
solve for x, e.g. kK’ —x” = puew’, thus:

2 2
K’ =k’ - pew’ =%(,uf:a)2) 1+ 1+{Z—;] — UEW’ =%(y§(oz) 1+[Z—;] -1
Hence {finally}, we obtain:
~ £l oo\ s ~ &u o\ &
k(@) =Re{k (@ )}:(u\/; 1+(£—;J +1| |and: K(m):ﬁm{k((o)}zw\]; 1+[$) -1

The above two relations clearly show the frequency dependence of both the real and imaginary

components of the complex wavenumber & (@)= k() +ix (). This physically means that EM
wave propagation in a conductor is dispersive (i.e. EM wave propagation is frequency dependent).

Note also that the imaginary part of k (), k(@)= 3Im {ig (a))} results in an exponential

attenuation/damping of the monochromatic plane EM wave with increasing z:

(7.1)=

and: f;)’(F,t)=

i{i:':—mf]

= é,,e_“el{t_ﬂ) where: |k (co) =k (a)) +iK (co)

esIH)
i

e

i

e—k:ei(.ﬁ:—(m} =£f{7>< E(Z, ) ﬁk'
w w

i(f.-—rot}
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The characteristic distance z over which E and B are attenuated/reduced to 1/e=¢™' =0.368

of their initial values (at z = 0) is known as the skin depth, |0, ((9) = I/K‘(a)) (SI units: meters).

. 1 1 -
ie. |0, (0)= = % = (z=0,.1)= Ee W)

K\®
) a)\/% WA _s 1ilk=an)
2 ED (Z_ -w’)
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The real part of k (o), i.e. k(o)= ﬂ%e{]; ((o)} determines the spatial wavelength A (o),

the phase speed v, (@) and also the group speed v, (@) of the monochromatic EM plane wave

in the conductor:

vd @) = propagation speed
of a peint on waveform
that has constant phase .

Phase ® = (kz - er) = constant.
A constant phase peint on the
waveform moves: z(f) = O/k +vg L.

| dk ((0) - v,(@) = propagation
= speed of energy /
dk(a))/da) do information.

1MHz compare the corresponding value in air.

conductor?

Find the wavelength and propagation speed in copper for radio wave at

Why high frequency wave propagate through the surface of the good

3. Explain the terms good and poor conductor depends on frequency.

Show that the skin depth in a good conductor is (2/0)\/(5).
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