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A brief historical introduction to matrices and their applications

1. The ancient origin of matrices

Historically, magic squares were known to antiquity in China, India and Japan, and they were commonly used to serve

as mathematical art and amusement. They were very largely found in these countries, engraved on stone, metal or

painting for over 4000 years. In ancient time, magic squares have been commonly used for astrological and divinatory

predictions about the future, especially in making predictions about longevity and prevention of diseases.

Subsequently, it has been recognized that magic squares were something more than art and amusement and worth

studying from a mathematical point of view. Indeed, a magic square seemed to be a device about which more has been

written than any other form of mathematical art or amusement. Considerable evidence in the history of

mathematics revealed that the existence of magic squares had perhaps served as the origin of the discovery of matrices

in different areas of mathematics and mathematical physics.

The famous treatise Shushu Jiyi (Memoir on Some Traditions of the Mathematical Art) by Zhen Luan, a sixth-century Chinese

mathematician, contained the 3 × 3 magic squares of nine numbers from 1 to 9 organized in 3 rows and 3 columns so

that the sum of each row, each column and each of the two diagonals is 15. In modern notation, this magic square

represents a 3×3 square matrix of 32 = 9 elements. In the tenth century, during the Song Dynasty, magic squares were

commonly used in devination, predicting what will happen in the future based on the purely numerical aspects of

magic squares.

In 1514, among many symbolic elements in Albrecht Du¨rer’s (1471–1528) famous painting Melencolia I also

contained the 4 × 4 magic square of 42 = 16 integers from 1 to 16 arranged in 4 rows and 4 columns so that it has the

property similar to a 3 × 3 magic square (1.1), that is, the sum of each row, each column and each of the two

diagonals is 34. Interestingly, the two middle elements of the last row of (1.2) represent the date of the painting as

1514. In modern notation, this magic square (1.2) is nothing but a 4 4 square matrix of 42 = 16 elements.

(1.1) (1.2)
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In spite of considerable study of magic squares for a long period of time, it was B. de Bessey Frenicle (1605–1675),

a French mathematician interested in number theory and combinatories, who first described 880 different 4×4

magic squares in some detail. His work was first published posthumously in 1693. Based on the fourth-order magic

square written originally by Frenicle himself as considerable research has recently been done on magic squares of

order 4 and higher orders and their properties in the 1980s.

Many additional magic squares were also found in Chinese, Indian and

Japanese ancient mathematics with more geometrical figures, including

magic circles and magic hexagons. In general, if Mn is an n×n magic

square that contains each of the entries 1, 2, 3, .. ., n2 exactly one with

the same sum of each row, each column and each of the two diagonals,

then the common sum is called the weight (or magic constant) of Mn,

denoted by wt(Mn) which is defined by

Thus, the weights of magic squares of order n=3, 4, 5, ... are 15, 34, 65, ... , respectively.

These extraordinary examples of magic squares illustrate the power and ability of recre-ational

mathematics which can often lead to the most profound discoveries in mathematical Sciences.

(1.3)

(1.4)
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2. Matrices and systems of linear equations
The above introduction to the magic squares led to the idea of matrices. A matrix is a rectangular array of real, complex or any other

mathematical objects. The name matrix (the Latin word ‘womb’, originated from ‘mater’ – ‘mother’) was given by one of the

founders of modern matrix algebra, the British mathematician, James Joseph Sylvester (1814–1887).

A matrix A = (aij) of m rows and n columns (m and n are positive integers) is called an m × n matrix defined by

where aij are called elements (or entries) in the ith row and jth column

in A. If m n, the matrix A (aij) is called a square matrix of order n.

A1×1 matrix is simply a number, for example, ( -5) = -5. In

particular, the elements a11, a22, ... , ann are called the diagonal

elements of A. If in a square matrix all elements except the diagonal

elements are 0, the matrix is called a diagonal matrix. If all diagonal

elements of a diagonal matrix is 1, then A is called an identity matrix

which is usually denoted by I.

Historically, the first use of matrix methods to solve simultaneous equations was found in the Chinese text on The Nine Chapters on the

Mathematical Art written during the Han Dynasty (202 BC–200 AD). In 1683, Seki Kowa (1642–1708) in Japan first discovered the

idea of determinants to solve two simultaneous quadratic equations and then developed many interesting properties of determinants.

At about the same time, determinants were introduced in Europe, and in 1693, Gottfried Wilhelm Leibniz (1646–1716) initiated his

study of a system of linear equations using determinants. Subsequently, in 1729, Colin Maclaurin (1698–1746) used the method of

determinants to solve systems of simultaneous linear equations in two, three and four unknowns, and his work was then published in

his posthumous Treatise of Algebra in 1748.

where aij are real or complex coefficients and bi (I = 1, 2, 3,... , n, and j = 1, 2,..., n) are non-homogeneous terms

in the system (2.2). This system of n algebraic equations in n unknowns can be expressed in terms of the n × n

square matrix A = (aij) given by (2.1) of the form

(2.1)

(2.2)

In 1750, Grabriel Cramer (1704–1752), a great Swiss

mathematician, formulated a general rule for solving n

algebraic equations in n unknowns x1, x2, ... , xn of the

form

where aij are real or complex coefficients and bi (I = 1, 2,

3,... , n, j = 1, 2,..., n) are non-homogeneous terms

in the system (2.2).
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(2.3)

(2.4)

where x and b are n × 1 column matrices (or column vectors) of the form

Cramer solved the system (2.3) in terms of determinants of the form

(2.5)

(2.6)

(2.7)

where I = 1, 2, 3, ... , n and det A = IAI is called the determinant which is defined by the unique scalar 

associated with the matrix A as 

which can be expressed as the sum of all n! terms as
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where the row suffixes appear in normal order, while the column suffixes i, j, k, ... (n altogether) appear

as some permutation of the normal order 1, 2, 3, ... , n. In (2.5), det Ai = IAi I is the determinant of

order n obtained from det A = IAI by replacing its ith column by the column containing the non-

homogeneous term b1, b2, ... , bn.

In general, matrices and systems of linear equations arise in too many areas of mathe- matics, science,

engineering, business and industry. Matrices have innumerable applications in solving problems in

quantum mechanics, general theory of relativity, economics, sociology, cryptology (coding and

decoding messages), seriation archaelogy, probability and statistics. There are also too many

applications of systems of linear equations, including analysis of networks in civil and electrical

engineering, transportation, communication, traffic flow and information theory.

Historically, determinants were discovered over two centuries before the discovery of matrices. In

1841, Arthur Cayley (1821–1895), a famous British mathematician, first introduced the notation of two

vertical lines on either side of the array to denote the determinant which has now become a standard.

The elegant formula (2.5) is universally known as Cramer’s Rule which was published by Cramer in his

treatise Introduction to the Analysis of Algebraic Curves in 1750. Although Cramer’s Rule is exact and

mathematically elegant, it is computationally inefficient for all but small systems of linear equations

because it involves computation of determinants of large order. So, the computation of det A of order n

from its definition (2.7) is a major problem of computing n! terms. Indeed, the computation of very

large determinants is almost a formidable task. In solving a system of n linear equations in n unknowns

that has a unique solution, the Cramer Rule involves

(1/3n4 + 1/3 n3 + 2/3 n2 + 1/3 n − 1) multiplications and (1/3 n4 − 1/6 n3 − 1/3 n2 + 1/6 n)

additions so that the total number of arithmetic operations required, T(n), is the sum of the above two

expressions which is approximately equal to T (n)= 2/3 n4 for large n. Subsequently, other efficient

iterative and numerical techniques, including the Gauss elimination and the Gauss–Jordan elimination,

have replaced Cramer’s Rule for solving linear systems of equations.
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Carl Friedrich Gauss (1777–1855) discovered the most famous algorithm for finding the general solution of a

system of linear equations (2.3) by reducing the associated augmented matrix of the system to a triangular form so

that the final solutions can be obtained by back substitution. This algorithm is universally known as the Gauss

elimination. However, it was known to Chinese mathematicians in the third century BC, but it bears the name of

Gauss because of his rediscovery of the method for finding solutions of a system of linear equations to describe the

orbit of a planet asteroid. Subsequently, Wilhelm Jordan (1842–1899), a German mathematician, who made an

important modification of the Gauss elimination algorithm, now known as the Gauss–Jordan elimination method,

which simplifies the back substitution process. In fact, the Gauss–Jordan procedure involves elimination of the

unknown xk in the kth step of the procedure, not just in the kth equation, but also in all preceding equations of the

system.

In solving a system of n equations with n unknowns, the Gauss elimination method requires a total operation, T(n),

of ( 1/3n3 + n2 − 1/3 n) multiplications and (1/3n3 + 1/2 n2 − 5/6 n) additions. Thus, T (n) ≈ 2/3 n3 for large n.

On the other hand, the Gauss–Jordan elimination method requires the total number of operations, T(n), which is

the sum of (1/2 n3 + 1/2 n2) multiplications and (1/3 n3 − 1/2 n) additions so that T(n) ≈ n3 for large n. Thus, the

Gauss elimination requires fewer operations of multiplication and addition, and hence it is 50% more efficient than

the Gauss–Jordan elimination method. Hence, the reduction in the total number of arithmetic operations not only

saves the computer time, but also increases the accuracy of the final solution as with less operations that are

performed, the smaller the possible round-off errors. In general, the Gauss elimination is more accurate as well as

more efficient than the Gauss–Jordan elimination method. Further, it is definitely more accurate and efficient than

Cramer’s Rule.

For example, the determinant of a 2 × 2 square matrix 

(2.8) is

(2.9)
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Similarly, the determinant of a 3 × 3 square matrix

is given by

(2.10)

(2.11)

(2.12)

(2.13)

Thus, det A = |A| in (2.12) can be rewritten in a compact form as

(2.14)

(2.15)
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where δik is the Kronecker delta function defined by

3. Algebraic properties of matrices
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Matrices in graph theory and electrical networks
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