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A brief historical introduction to matrices and their applications

1.The ancient origin of matrices

Historically, magic squares were known to antiquity in China, India and Japan, and they were commonly used to serve
as mathematical art and amusement. They were very largely found in these countries, engraved on stone, metal or
painting for over 4000 years. In ancient time, magic squares have been commonly used for astrological and divinatory
predictions about the future, especially in making predictions about longevity and prevention of diseases.
Subsequently, it has been recognized that magic squares were something more than art and amusement and worth
studying from a mathematical point of view. Indeed, a magic square seemed to be a device about which more has been
written than any other form  of mathematical art or amusement. Considerable evidence in the history of
mathematics revealed that the existence of magic squares had perhaps served as the origin of the discovery of matrices

in different areas of mathematics and mathematical physics.

The famous treatise Shushu Jiyi (Memoir on Some Traditions of the Mathematical Art) by Zhen Luan, a sixth-century Chinese
mathematician, contained the 3 X 3 magic squares of nine numbers from 1 to 9 organized in 3 rows and 3 columns so
that the sum of each row, each column and each of the two diagonals is 15. In modern notation, this magic square
represents a 3X3 square matrix of 3 = 9 elements. In the tenth century, during the Song Dynasty, magic squares were
commonly used in devination, predicting what will happen in the future based on the purely numerical aspects of
magic squares.

In 1514, among many symbolic elements in Albrecht Du'rer’s (1471-1528) famous painting Melencolia I also
contained the 4 X 4 magic square of 4> = 16 integers from 1 to 16 arranged in 4 rows and 4 columns so that it has the
property similar to a 3 X 3 magic square (1.1), that is, the sum of each row, each column and each of the two
diagonals is 34. Interestingly, the two middle elements of the last row of (1.2) represent the date of the painting as
1514 In modern notation, this magic square (1.2) is nothing but a 4 4 square matrix of 4> = 16 elements.
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g spite of considerable study of magic squares for a long period of time, it was B. de Bessey Frenicle (1605—1 675),\
a French mathematician interested in number theory and combinatories, who first described 880 different 4X4
magic squares in some detail. His work was first published posthumously in 1693. Based on the fourth-order magic
square written originally by Frenicle himself as considerable research has recently been done on magic squares of

order 4 and higher orders and their properties in the 1980:s.

Many additional magic squares were also found in Chinese, Indian and

d
h

Japanese ancient mathematics with more geometrical figures, including

magic circles and magic hexagons. In general, if M is an nXn magic

~nn o

square that contains each of the entries 1, 2, 3, .. ., n? exactly one with 13
the same sum of each row, each column and each of the two diagonals, [ m (1.3)
then the common sum is called the weight (or magic constant) of M, n o p q

denoted by wt(M,) which is defined by

n(n?+1 I
wt(M,) = ( )=—Zk. —> (1.4

2 n
Thus, the weights of magic squares of order n=3,4, 5, ...are 15, 34, 65, ... , respectively.

These extraordinary examples of magic squares illustrate the power and ability of recre-ational

mathematics which can often lead to the most profound discoveries in mathematical Sciences.
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/2. Matrices and systems of linear equations \

The above introduction to the magic squares led to the idea of matrices. A matrix is a rectangular array of real, complex or any other
mathematical objects. The name matrix (the Latin word ‘womb’, originated from ‘mater’ — ‘mother’) was given by one of the
founders of modern matrix algebra, the British mathematician, James Joseph Sylvester (1814—-1887).

A matrix 4 = (aj].) of m rows and n columns (m and n are positive integers) is called an m X n matrix defined by

/ where a; are called elements (or entries) in the ith row and jth column

( all alz b7 aln \ in A. If m n, the matrix A (ai].) is called a square matrix of order n.

g ay - ay A1X1 matrix is simply a number, for example, ( -5) = -5. In

A - {a ) - - < pa particular, the elements a,;, a,,, ... , a,, are called the diagonal
{J v A1 (2 . 1) elements of A. If in a square matrix all elements except the diagonal
elements are 0, the matrix is called a diagonal matrix. If all diagonal

\aml a;);2 A7 amn ) elements of a diagonal matrix is 1, then 4 is called an identity matrix

which is usually denoted by I.

Historically, the first use of matrix methods to solve simultaneous equations was found in the Chinese text on The Nine Chapters on the
Mathematical Art written during the Han Dynasty (202 BC—200 AD). In 1683, Seki Kowa (1642—1708) in Japan first discovered the
idea of determinants to solve two simultaneous quadratic equations and then developed many interesting properties of determinants.
At about the same time, determinants were introduced in Europe, and in 1693, Gottfried Wilhelm Leibniz (1646—1716) initiated his
study of a system of linear equations using determinants. Subsequently, in 1729, Colin Maclaurin (1698—1746) used the method of
determinants to solve systems of simultaneous linear equations in two, three and four unknowns, and his work was then published in

his posthumous Treatise of Algebra in 1748.

In 1750, Grabriel Cramer (1704-1752), a great Swiss anx) +apx: + -+ dipX, = bl
mathematician, formulated a general rule for solving n anxy +anx; + -+ ayx, = bz
algebraic equations in n unknowns xj, x,, ..., x, of the B B _— (2 2)

form

where a, are real or complex coefficients and b, (I = 1, 2, a,1 X1 + apx> + -+ appx, = bn
3,...,n, j=1,2,...,n) are non—homogeneous terms

in the system (2.2).

where a, are real or complex coefficients and b, (I =1, 2, 3,... ,n,and j = 1, 2,..., n) are non-homogeneous terms
in the system (2.2). This system of n algebraic equations in n unknowns can be expressed in terms of the n X n
square matrix A4 = (a,) given by (2.1) of the form
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AX=Db, —— 3

where x and b are n X 1 column matrices (or column vectors) of the form

X b[
X2 bg

Xxi=1 . and b=| | —— (2.4)
Xn by,

Cramer solved the system (2.3) in terms of determinants of the form

. det A; . | A; ]
detA  |A|

Xi

—> (2.5

where I =1, 2,3, ..., nand det A = IAl is called the determinant which is defined by the unique scalar

associated with the matrix A as

ay dap Alp
a» a» a»
2 22 n| — >
detA = |A| = |"% n (2.6)
a,| dy2 --* dun

which can be expressed as the sum of all n! terms as

detA = |A| = Z(ﬂ:l)(auaz,-ask h ——— o
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ﬁlere the row suffixes appear in normal order, while the column suffixes i, j, k, ... (n altogether) appeh
as some permutation of the normal order 1, 2, 3, ..., n. In (2.5), det A, = IA, Iis the determinant of

order n obtained from det A = IAI by replacing its ith column by the column containing the non-

homogeneous term by, b,, ..., b,.
In general, matrices and systems of linear equations arise in too many areas of mathe- matics, science,
engineering, business and industry. Matrices have innumerable applications in solving problems in
quantum mechanics, general theory of relativity, economics, sociology, cryptology (coding and
decoding messages), seriation archaelogy, probability and statistics. There are also too many
applications of systems of linear equations, including analysis of networks in civil and electrical

engineering, transportation, communication, traffic flow and information theory.

Historically, determinants were discovered over two centuries before the discovery of matrices. In
1841, Arthur Cayley (1821-1895), a famous British mathematician, first introduced the notation of two
vertical lines on either side of the array to denote the determinant which has now become a standard.
The elegant formula (2.5) is universally known as Cramer’s Rule which was published by Cramer in his
treatise Introduction to the Analysis of Algebraic Curves in 1750. Although Cramer’s Rule is exact and
mathematically elegant, it is computationally inefficient for all but small systems of linear equations
because it involves computation of determinants of large order. So, the computation of det 4 of order n
from its definition (2.7) is a major problem of computing n! terms. Indeed, the computation of very
large determinants is almost a formidable task. In solving a system of n linear equations in n unknowns
that has a unique solution, the Cramer Rule involves

(1/3n* + 1/3 n* + 2/3 n> + 1/3 n — 1) multiplications and (1/3 n* — 1/6 n* — 1/3 n> + 1/6 n)
additions so that the total number of arithmetic operations required, T(n), is the sum of the above two
expressions which is approximately equal to T (n)= 2/3 n* for large n. Subsequently, other efficient
iterative and numerical techniques, including the Gauss elimination and the Gauss—Jordan elimination,

have replaced Cramer’s Rule for solving linear systems of equations.

372572020
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/ Carl Friedrich Gauss (1777—1855) discovered the most famous algorithm for finding the general solution om
system of linear equations (2.3) by reducing the associated augmented matrix of the system to a triangular form so
that the final solutions can be obtained by back substitution. This algorithm is universally known as the Gauss
elimination. However, it was known to Chinese mathematicians in the third century BC, but it bears the name of
Gauss because of his rediscovery of the method for finding solutions of a system of linear equations to describe the
orbit of a planet asteroid. Subsequently, Wilhelm Jordan (1842—1899), a German mathematician, who made an
important modification of the Gauss elimination algorithm, now known as the Gauss—jordan elimination method,
which simplifies the back substitution process. In fact, the Gauss—Jordan procedure involves elimination of the
unknown x, in the kth step of the procedure, not just in the kth equation, but also in all preceding equations of the

system.

In solving a system of n equations with n unknowns, the Gauss elimination method requires a total operation, T(n),
of (1/3n* + n’ — 1/3 n) multiplications and (1/3n° + 1/2 n* — 5/6 n) additions. Thus, T (n) & 2/3 n’ for large n.
On the other hand, the Gauss—Jordan elimination method requires the total number of operations, T(n), which is
the sum of (1/2 n’ + 1/2 n’) multiplications and (1/3 n* = 1/2 n) additions so that T(n) ~ n3 for large n. Thus, the
Gauss elimination requires fewer operations of multiplication and addition, and hence it is 50% more efficient than
the Gauss—Jordan elimination method. Hence, the reduction in the total number of arithmetic operations not only
saves the computer time, but also increases the accuracy of the final solution as with less operations that are
performed, the smaller the possible round-off errors. In general, the Gauss elimination is more accurate as well as
more efficient than the Gauss—Jordan elimination method. Further, it is definitely more accurate and efficient than

Cramer’s Rule.

For example, the determinant of a 2 X 2 square matrix

A — [ an .
“\ay a» > (28 B

al apn |

detA = [A]| = “| = ajan — ayam.

——>  (2.9)
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Similarly, the determinant of a 3 X 3 square matrix

ayp, ap da;;

A= | ay apn ap
az|; daix dazj (2.10)
is given by ajy dap  aps
det A = |A|=|an an ax (2.11)
as|y asz as;
dry a3 az| ax; azy axm;
= ajj —daj aj (2.12)
azy asj as; as az; asp :
= daylaxasy — axdyp) — aplaasy — dx;dsy) + apalazayp — axpdasg).
(2.13)

Thus, det A = |A| in (2.12) can be rewritten in a compact form as

|A| = ay My —aiaM; + aisM;,

(2.14)

=anAy +apAp+a;is, (2.15)
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/ where the determinant M;; of order n — 1 obtained from det A = |a;;| by deleting the row

and the column containing the element a;; is called the minor of the element a;;, and the
determinant 4;; of order n — 1 of the element a;; is called the cofactor of a;; defined by

Aij = (=) M;;. (2.16)

Hence. |[4|in(2.14) and (2.15) has been expanded as the sum of elements of a row multiplied
by their own minors or cofactors along the ith row:

3 3
A=) (=)' ayM; =) aj;A (2.17)
j=1

j=1

Similarly, in general, the determinant 4 of order n can be expanded as the sum of a row (or
column) multiplied by their own cofactors of the forms

|A| = Z(—UHj ai;M;; = Zaiinj- (2.18)
j=l1 j=l1

|A| = Z(—”Hj aiiM;; = Zaiinj- (2.19)
i=1 i=|

Both expansions (2.18) and (2.19) are universally known as the Laplace Expansion Theorem,
since Pierre Simon Laplace (1749-1827). a famous French mathematician, proved them in
his work on the theory of determinants.

There 1s a simple consequence of (2.18)+2.19) that follows from replacement of the
ith row of |4| by the kth row (or the jth column by the &th column) so that

0= Z:aij,»j, k ;é i, 0= Za,—kA,-j. k ?é j, (220)
j=I i=l

where the sum of elements of a row (or column) 1s multiplied by the corresponding cofactor
of another row (or column).

In compact form, (2.18)—(2.20) can be written as
@ 3/25/2020 /




n

Y ajAij = |A| S, ZaikAij = |A| &;,
j=1

1=l

where 51.k is the Kronecker delta function defined by

[0, ik
5""{1, i=kl'

3. Algebraic properties of matrices
(1) Equality. Two m x n matrices A = (a;) and B = (b;;) are equal if the corresponding

elements are equal, that is, a; = b;; for each i and /.

(2) Addition of matrices. The sum of two m x n matrices, 4 = (a;) and B = (b;), 1s

defined as the m x n matrix C' = (¢;) obtained by adding corresponding elements
so that

C=A+B=(a;j)+(b,-j)=(a,-j +b,'j)=((-‘,'j). (3.1)

It follows from this definition that matrix addition 1s commutative and associative
so that

A+B=B+A, A+ (B+C)=(A+B)4+C. (3.2)

(3) Zero (or null) matrix.An m x n matrix 4 = (a;) is called a zero (or null) matrix

-

if all its elements a; = 0, and it is denoted by O. For every m x n matrix A, there
exists an m x n zero matrix O such that 4 + O = A4 = 0O + A. This zero matrix is
the additive identity element for the set of all m x n matrices. 3/25/2020
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(4) Scalar multiplication. The product of a matrix 4 = (a;) by a scalar (real or complex)
« 15 defined as follows:

aA = a(a,-,-) = (aa,-j). (33)
Thus, the following distributive law holds:
a(A+B)=aA+ BB, (@+B)A=aA+ A, (3.4)

for any two scalars @ and B. In particular, the negative of 4 1s denoted by —4 and
defined by

—A=(-1)A. (3.5)

(3) Subtraction of matrices. The difference 4 — B of two m x n matrices, 4 = (a;) and
B = (by), 1s defined by

A — B = A+ (-B)=(aij) +(-bi;) = (aij — b;;). (3.6)

Thus, the difference (3.6) 1s similar to the sum (3.1).
(6) Transpose of a matrix. The transpose of a matrix 1s obtained by mnterchanging
the rows by columns and is denoted by A’. If 4 = (@;) 1s an m x n matrix given

@ 3/25/2020 /




(7)

\

by (2.1), then

ay azp -+ Aaml
T T a2 ax@ --- am? :
A=) =) =15 0L i B (3.7)
Ayp Ay " Apy

Thus, A7 is an n x m matrix with elements aj;. If 4 = (a;), then 4 I = (a;;) and
(AT = ('aj,-_)T = (a;) = A. Thus, the relation between 4 and 4 I'is symmetric, either
matrix being a transpose of the other.

Row and column matrices (vectors). A row matrix x 15 a | x n matrix so that
X = (X1 x2--+x,). A column matrixis an n x | matrix so that the transpose of x is
a column matrix

=1 L, (3.8)

Both row and column matrices can be regarded as row and column vectors. A
matrix may be considered as the generalization of a vector. Thus, the transpose of
a column matrix (vector) is a row matrix (vector) so that

(xT)T =(X] X2+ X,;) = X. (3.9)

It is convenient to use row vectors and column vectors in matrix algebra.

372572020
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(8) Matrix multiplication. The productAB of two matrices is defined if the number of
columns in 4 is the same as the number of rows of B. If 4 = (a;;) 1san m x n matrix
and B = (b;) 1s an n x r matrix, then the product C = 4B is an m x r matrix, and
the elements ¢;; of C = (c;;) are defined by

Cij = Z (L bk} (3.10)
k=1

In general, matrix multiplication i1s non-commutative. In order for both AB and B4
to exist, it is necessary that 4 and B are square matrices of the same order. Even in
that case two products may not be equal, so that, in general,

AB # BA. (3.11)

For example,

A

) 4 |0

(1 -2) m B=(1 1)
244 044\ _(6 4

Az (1-2 0-2) (-1 -2)

2 4
3 2 | 3/25/72020
/
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@ for exactly one size of the identity matrix.

™

Thus, AB # BA. Unlike the multiplication of numbers in ordinary algebra, the
matrix multiplication is non-commutative.

If
[ 0 00
A—(l 0) and B—(l l)'
then AB = O, but neither 4 nor B 1s a zero matrix. In ordinary algebra, if ab = 0,

then @ = 0 or b = 0, that 1s, zero divisors do not exist. However, in matrix algebra,
it 1s possible to have zero divisors. This i1s a striking contrast between ordinary

algebra and matrix algebra.
It can be shown by direct calculation that matrix multiplication satisfies the
associative and distributive laws:

(AB)C = A(BC), A(B+C)=AB+ AC, (A+ B)C = AC + BC.
(3.12)

(9) Identity (unit) matrix. An n x n square matrix/ = [, = (3;) 1s called an identity (or

unit) matrix if 3; 1s the Kronecker delta symbol defined in (2.22). Thus, /A =4 =
Al for any n x n matrix A. It 1s easy to check that if 4 is any m x n matrix, then

[uAd= A=Al We wnte [4 = 4 = IA, since each matrix product is well defined
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(10) Inverse of a matrix. If A 1s an n x n matrix, then inverse of A is an n x n matrix \
X = A" which satisfies the property

AX =1=XA, (3.13)

where /= (8;;) 1s an n x n identity matrix defined by the Kronecker delta function,
8,1 (2.22) so that [4 = Al = A, and [ is the multiplicative identity matrix for the

set of all n x n matrices.
Using this definition. it is easy to find the inverse of an 2 x 2 matrix, if it exists,

a b 2
A—(c d)' (3.14)

Suppose its inverse X = 4~ is given by

: ‘) (3.15)

w
so that AX = [ = XA, that 1s,
a b\(x vy ax + bz ay+ bw [ 0
(c d)(z iv)z(cx+dz C:\'+duy)=(0 l)' (3:16)
Thus, x, v, z. w satisfy the system of four linear equations

ax + bz =1, ay + bw =0,

e cx +dz =1, cy +dw = 1. 3/25/2020
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By simple elimination, the solutions are given by

a
. y A = e w==— (3.17)
|A |A] A |A]

provided |4| = ad — bc # 0. Similarly, X4 = [ leads to the same solutions (3.17).
Thus, the inverse of 4 exists and is given by

x=A"=L( d. -b), (3.18)

provided [4] # 0, that is. 4 1s a non-singular matrix. This is really a simple and
elegant formula for the inverse of the 2 x 2 non-singular matrix 4 given by (3.14).
However, there is no such simple formula for the inverse of larger square matrices.
However, 1t 1s possible to use other effective methods to calculate the inverse of
n x nmatrices. The most famous algorithm used to find the inverse of a non-singular
matrix is known as the Gauss-Jordan elimination. This algorithm was originally
discovered by Gauss and then subsequently modified by Jordan.

The inversion of an n x n matrix 4 requires approximately #° addition and
multiplication operations which means it involves a large amount of computational
work.

We first develop a method of solving the matrix equation

(3.19)

e AX—b.,
3/25/2020
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similar to the solution of the ordinary scalar equation ax = b, where a, b and x are
real numbers. Thus, if a # 0, the unique solution isx = a~'b = 3. [fa =0, then
the equation has an infinite number of solutions for x. We use the same procedure
to solve the matrix equation (3.19) for a non-singular matrix A4 so that |4| # 0, and
then we multiply (3.19) by A~ to obtain the solution

A Ax=A""b or x=A"'b. (3.20)
Moreover,
Ax= AA"'b=h.

This proves that x = A~'b is the unique solution of the matrix equation (3.19). So,
the natural question is how to find A~ of an # x n matrix 4. We can answer this

question by introducing the adjugate matrix of 4 = (a;;), denoted by adj 4. and
defined by

adjA = (,Aij,)T =(Aj) (3.21)

where 4;; are the cofactors of elements a;; in the associated determinant |4].

We next use the same example of the 2 x 2 matrix 4 given by (3.14) to find 4~
using the idea of its adjugate matrix. The cofactors of the associated determinant

0

1 3/25/2020




/ |4| are 4y} = d, Ay2 = —c¢, A21 = —b and A2; = a so that

wiod o SFhies m ca Ay Axy\ _(d b
adj A = (Ayj) -A’"—(Alz Azz)—(—c 8 ) (3.22)
Thus,
e i 1 d —b\ (ad —bc 0 _ (1Al O
A(ad“A)_(C d)(—c a )-( 0 ad—bc)—( 0 |A|)
=|A|((', ‘1))=|A|1, (3.23)
where

a b
|A] = i dl—ad—bcaéO.

Similarly, it is easy to verify that
(adj A) A = |A| 1. (3.24)
Thus, 1t follows from (3.23) and (3.24) that

A (adjA) _ / (adj A)

A. (3.25)
|A| |A]

This proves that A~ exists and is given by

—C a

e adj A =L( - _b). (3.26)

|A] |A|
@ 1 3/25/2020
K This is the same formula (3.18) for 4! obtained before from the definition (3.13).




i

explicitly, the product A(adj 4) gives
ajl an
A(adj A) = (a;)(A;)" = | 7 92
dp) an2
which is, by (2.20)«2.21ab).

1A] 0
0 |A]

0 0

The formula (3.25) is valid for an n x n non-singular matrix 4 which directly
follows from the matrix multiplication and the Laplace expansion theorem. More

\

~ Qln Al Ax Ayl
- axy Ap Ax A2
. ann Aln A:n Ann
0
0
0 = |A| L. (3.27)
|A
3/25/2020




/Similarly,

Thus. (3.27) and (3.28) lead to (3.25). Moreover, the inverse of the n < n non-
singular matrix 4(|4] = 0) is given by

(adjA)A = |A| 7 = A(adj A). (3.28)

| .
Al = TAT (adj A). (3.29)

The following properties can be proved for the inverse of the transpose matrix A7
and the product matrix AB:

ATy =@ Y, (3.30)
(AB)Y '=B1A"1. (3.31)

If 4 1s a singular matrix, then |4| = 0 and hence formula (3.29) becomes nvalid,
and 4! cannot be determined by (3.29). However, it follows from (3.28) that

A(adjA) = (adj A)A = 1 |A| = O. (3.32)

In other words, the product of a singular matrix 4 and its adj 4 is the null matrix.
For a non-singular matrix 4. (3.28) is still valid. We use |[4AB] = |4||B| for any two
square matrices 4 and B so that it follows from (3.28) that

|A] ladj A| = |1 |A]] = |A]", (3.33)
or
ladj A] = |A|" . (3.34)

In solving the linear system of equations (3.19). it often happens that small changes
in the elements of the matrix 4 produce large changes in the solution of (3.19).
In such a case, the matrix 4 1s called ill-conditioned. On the other hand. if small
echanges of the elements of 4 produce only small changes in the solution of (3.19),

thern the matrix A is called well-conditioned. 3/25/2020




/ (11) Symmetric and skew-symmetric matrices. A matrix 4 = (ay) is called symmetric if \
A=A", that is. a; = a;; for all i and j.
A matrix 4 = (a;) is called skew-symmetric or anti-symmetric if 4 = —A T that
is, a; = —a;; forall i and /.
A matrix to be symmetric or skew-symmetric must necessarily be a square
matrix. Moreover, the diagonal elements of a skew-symmetric matrix must be zero,

since a; = —a; which means a; = 0 for all i.
The matrix
2, g )
A=|1 3 =2
0 -2 4

is a 3 x 3 symmetric matrix.

The matrix
0 -1 -3
B=§1 O =2
3 :2: 0

1s a 3 x 3 skew-symmetric matrix. However, there are matrices which are neither
symmetric nor skew-symmetric. The matrix

1 =2
e={17)
is an example of neither symmetric nor skew-symmetric.
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/ (12) Conjugate, Hermitian and skew-Hermitian matrices. A real (or complex) matrix\
i1s a matrix whose elements are real (or complex) numbers. The conjugate of a
complex matrix 4 = (a;) 1s denoted by A and is obtained by replacing a;; by its
complex conjugate @;; so that we can write

and hence A = (_a'?,—') = (a; 7 ), and the relation between 4 and A is symmetric, since
either matrix is the conjugate of the other. Note that the matrix 4 is real if and only
if A= A.

The transpose of the conjugate matrix is denoted by A4*. and is defined by
A* = (A)".If A = (a;). then

A" =(a;;) and A = (@) (3.36)
and

m = (@) = (AT) (3.37)

This means that the transpose of the conjugate of a matrix is equal to the conjugate
of the transpose matrix.

Furthermore, AB = A B. Writing AB = C = (¢;;) and using the rule of matrix
multiplication gives

Cij = E aix by;.

k=

Thus,

k=1 k= k=1

since the conjugate of the sum and the conjugate of the product of two complex
@ numbers are equal to the sum of their conjugates and to the products of/thair




o

conjugates, respectively. Consequently, AB = A B, that is, the conjugate of the
product of two matrices is equal to the product of their conjugates.
For example, if

. A 39 v 1 443
A“(4+y —5+ﬂ)‘ then A ‘(1+i-5+m)'

and

- | 3
A—(4-y -s-m)'

and hence

=@ = (5L 575)=0n

A (complex) matrix 4 = (a;) is called Hermitian if A = A* = (Z)T that is. a;; =
a;; foralliand j. Since a;; = @j;, the diagonal elements a; of a Hermitian matrix are
all real numbers. If 4 1s a real symmetric matrix, then a; = a;; and a;; = @;; forall
i and /, since @ j; = @;;. Thus, every real symmetric matrix 4 is a Hermitian matrix.
Hermitian matrices are named after Charles Hermite (1822-1901), a renowned
French mathematician who first discussed the theory of Hermitian matrices and
their properties in 1854.

A matrix 4 1s called skew-Hermitian if A = —A* = — (X)T that is, a;; =
— (@j7) for all i and j. Every real skew-symmetric matrix is a skew-Hermitian
matrix.

It follows from the definition that the diagonal elements of a skew-Hermitian
ma;ri?( are either purely imaginary or zero because a;; = —a;;, or a; 18 3%151'}321 §
imaginary or zero.

\




a A

(13) Orthogonal and unitary matrices. A square matrix is called orthogonal if A A" = I.
This definition implies that 4”4 = I. Hence, A" = 4", that is, a matrix is orthogonal
if and only if its transpose 1s equal to its mverse. Further, if 4 is orthogonal, then
Its inverse 15 also orthogonal which follows from the fact that

ANATNY = A" A =ATA=1. (3.38)

f 4 is an orthogonal matrix, then |44”| = |l| = | and hence |4]4”| = 1. Since |4| =
AN 14 = Lorld|= £ 1.If|4| = |, then 4 is called a proper orthogonal matrix. If
A| = -1, then the matrix A 1s called an improper orthogonal matrix. The rotation
of the coordinate axes through an angle # is represented by a rotation matrix

P (cosG -siné?). 339

siné  cosd

This matrix R is orthogonal, since
R g7 = [ c0s? —sinfl\ [ cosf# smé\ (1 0 it
“\sinf cosf )\ —smf# cosf) \O 1)~
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Also, |R| = 1; hence, R 1s a proper orthogonal matrix. The linear transformation
\' = R x represents the rotation of the Cartesian coordinate system x y in the plane
through an angle ¢ about the origin where x = (x v)" and ¥ = (x'y)".

A complex matrix A 1s called unifary if and only if A4* = A*A = [, that is, if

r . s . .
(Z ) =A ', A real unitary matrix is an orthogonal matrix and the determinant of
a unitary matrix 1s x 1. For example, the matrix 4

A= ' (3.40)

is unitary and its determinant 1s 1. Furthermore, the product of two unitary
matrices is unitary, since

4By =8'A"=(B) @) =(AB) =(AB) . (4




()

(15)

Triangular and diagonal matrices. An n x n matrix 4 = (a;;) is called a triangular \
matrix if (1) a; = 0 fori < j, or (11) a; = 0 for i > j. More precisely, in case (1), 4
1s called the lower triangular matrix, that 1s, all elements above the main diagonal
are zero. In case (11), 4 1s called the upper diagonal matrix, that is, all elements
below the main diagonal are zero. Elements on the main diagonal can be zero or
NON-zero.

An n x n matrix D = (djy) is called a diagonal matrix if d; = 0 for i # j, that

1s, if all elements above and below the main diagonal are zero. So, any diagonal
matrix i1s both upper and lower triangular. A diagonal matrix D = (d};) is called a
scalar matrix if all d;; are equal to scalar k. Thus, i1f D is a scalar matrix and 4 1s
an n x n matrix, then AD = DA = kA, that is. D commutes with any matrix 4 and
the multiplication by D) has the same effect as the multiplication by the scalar £. In
particular, the scalar matrix D whose all elements on the main diagonal is | is the
identity (or unit) matrix so that Al = /14 = A.
Rank of @ matrix. The maximum number of linearly independent row vectors of an
n x n matrix A = (ay) is called the rank of A. and is denoted by rank 4. Similarly,
the rank of 4 i1s equal to the maximum number of linearly independent column
vectors of 4. Hence, rank4 = rank(A47). If 4 is a null matrix. then its rank is zero.
For example, the ranks of the following matrices

: 4 1 00 1 2! 3
A=(]_2), B=10 10), E€=(2:5 4
00 1 1 1 5

are 2, 3 and 2, respectively.

If A = (ay) 1s an n x n non-singular matrix. then its rank is n, and if 4 is a
singular matrix, then rank A is less than n.

The concept of the rank of a matrix was first defined by a German mathematician,
Georg Frobenius (1849-1917) who made major contributions to matrix algebra,
differential equations, group theory and group representations.

The reader 1s referred to Olver and Shakiban [2] and Poole [3] for detailed proofs

of algebraic properties of matrices.
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