


Rectangular potential barrier

In quantum mechanics, the rectangular (or, at times, square) potential barrier is a standard
one-dimensional problem that demonstrates the phenomena of wave-mechanical

tunneling (also called "quantum tunneling") and wave-mechanical reflection. The problem
consists of solving the one-dimensional time-independent Schrédinger equation for a particle
encountering a rectangular potential energy barrier. It is usually assumed, as here, that a free
particle impinges on the barrier from the left.

Although classically a particle behaving as a point mass would be reflected, a particle actually
behaving as a matter wave has a non-zero probability of penetrating the barrier and continuing
its travel as a wave on the other side. In classical wave-physics, this effect is known

as evanescent wave coupling. The likelihood that the particle will pass through the barrier is
given by the transmission coefficient, whereas the likelihood that it is reflected is given by

the reflection coefficient. Schrédinger's wave-equation allows these coefficients to be
calculated.
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Calculation
The time-independent Schrodinger equation for the wave function reads
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Hy(z) = “omas T V(z) | ¥(z) = Ey(=)
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where H is the Hamiltonian, k is the (reduced) A
Planck constant, m is the mass, E the energy of r B, C
the particle and ANAANANS NN ANNNS

V(z) = W[B(z) — 6(z — a)]

is the barrier potential with height V5 > 0 and
widtha. ©(z) =0, < 0; 8(z) =1, 2> 0

is the Heaviside step function, i.e.

V($) =<V f0<z<a Scattering at a finite potential barrier of height V5. The
0 ifa<z amplitudes and direction of left and right moving waves

are indicated. In red, those waves used for the derivation
The barrier is positioned between £ =0 and of the reflection and transmission amplitude. B > ¥ for
# = a. The barrier can be shifted to any g  thisillustration.

position without changing the results. The first
2

term in the Hamiltonian, —————1 is the
2m da?

kinetic energy.

The barrier divides the space in three parts (z < 0,0 <2 < a,z > a). In any of these parts, the
potential is constant, meaning that the particle is quasi-free, and the solution of the Schrodinger
equation can be written as a superposition of left and right moving waves (see free particle). If E > Vj

P (x) = A e®® 4 Aje=R2 gz <0
Yo(z) = B,e™* + Be™* 0<z<a
Yr(x) = Cre™® + Cle ™ g >a

where the wave numbers are related to the energy via

ko = /2mE/R? z<0 or z>a

ki = /2m(E-V)/K 0<z<a.

The index /I on the coefficients A and B denotes the direction of the velocity vector. Note that, if the
energy of the particle is below the barrier height, k3 becomes imaginary and the wave function is
exponentially decaying within the barrier. Nevertheless, we keep the notation r/1 even though the waves
are not propagating anymore in this case. Here we assumed F # Vj. The case E = V} is treated below.

The coefficients A, B, C have to be found from the boundary conditions of the wave function at z =0
and = a. The wave function and its derivative have to be continuous everywhere, so

¢é. (0) = 9¢ ((2
E"/’L(U) = 51/)0(0)
Yo(a) = Yr(a)
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—Y¢c(a) = —yYr(a).
2, vola) = ——¥r(a)
Inserting the wave functions, the boundary conditions give the following restrictions on the coefficients

A+ A =B, + B

‘Lkg(A,- — A;) = ’ikl(B,. — Bl)

B, 4 Bie7h = O ¢k 4 e iok0

ik; (Bre' — Bie79M) = jky(C, e — Cre~ok0) .

E=VO

If the energy equals the barrier height, the second differential of the wavefunction inside the barrier
region is 0, and hence the solutions of the Schrodinger equation are not exponentials anymore but linear
functions of the space coordinate

Yeo(z) =B1+ Bz 0<z<a.

The complete solution of the Schrodinger equation is found in the same way as above by matching wave
functions and their derivatives at £ = 0 and & = a. That results in the following restrictions on the
coefficients:

A+ A =8B

iko(Ar — A;)) = By

Bj + Bsa = C.e'%0 4+ Qe k0
B, = iko(C,e"* — Creieh),

Transmission and reflection

At this point, it is instructive to compare the situation to the classical case. In both cases, the particle
behaves as a free particle outside of the barrier region. A classical particle with energy E larger than the
barrier height Vj would always pass the barrier, and a classical particle with E < Vp incident on the
barrier would always get reflected.

To study the quantum case, consider the following situation: a particle incident on the barrier from the
left side (A,). It may be reflected (A;) or transmitted (C.).

To find the amplitudes for reflection and transmission for incidence from the left, we put in the above
equations A, = 1 (incoming particle), A; = r (reflection), C;=0 (no incoming particle from the right),
and C,. = t (transmission). We then eliminate the coefficients B;, B, from the equation and solve for r
and ¢.

The result is:

4koky e~(ko—F1)

t=
(o + k1)? — ek (ko — k)2
(kg — k}) sin(ak:)

r= .
2ikoky cos(aky) + (ki + k2) sin(aky)
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Due to the mirror symmetry of the model, the amplitudes for incidence from the right are the same as
those from the left. Note that these expressions hold for any energy E > 0.

Analysis of the obtained expressions

E<Vy

The surprising result is that for energies less than
the barrier height, E < V; there is a non-zero I
probability

classical | quantum

08
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Vi sinh? (k1 a) 08
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for the particle to be transmitted through the
buriter with [y = \/Zm(Vo —E)/R. This o

effect, which differs from the classical case, is
called quantum tunneling. The transmission is 00 , . v ; .
exponentially suppressed with the barrier width, = Ly i E‘,i,o " e &
which can be undEI:StOOd ﬁ'm_n the functmnal_forrp Transmission probability through a finite potential barrier
of the wave function: Outside of the barrier it _ ) )

. . iy for +/2mVpae/h=1, 3, and 7. Dashed: classical result.
oscillates with wave vector kg, whereas within the M )

. A . Solid line: quantum mechanical result.

barrier it is exponentially damped over a distance
1/k; . If the barrier is much wider than this decay

length, the left and right part are virtually independent and tunneling as a consequence is suppressed.

E>V,
In this case
1
T=tf = ————
1+ Vg sin®(k1a)
4E(E-Vp)

where ky = \/ 2m(E — Vo) /R

Equally surprising is that for energies larger than the barrier height, E > V}, the particle may be
reflected from the barrier with a non-zero probability

R=|rf=1-T.
The transmission and reflection probabilities are in fact oscillating with kja. The classical result of

perfect transmission without any reflection (" = 1, R = 0) is reproduced not only in the limit of high
energy E > Vj but also when the energy and barrier width satisfy kja = nmr, where n =1,2,... (see
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peaks near E/Vj = 1.2 and 1.8 in the above figure). Note that the probabilities and amplitudes as
written are for any energy (above/below) the barrier height.

E= VO

The transmission probability at F = Vj evaluates to

1
T 14+ ma2Vy/2R2

Remarks and applications

The calculation presented above may at first seem unrealistic and hardly useful. However it has proved
to be a suitable model for a variety of real-life systems. One such example are interfaces between two
conducting materials. In the bulk of the materials, the motion of the electrons is quasi-free and can be
described by the kinetic term in the above Hamiltonian with an effective mass m. Often the surfaces of
such materials are covered with oxide layers or are not ideal for other reasons. This thin, non-conducting
layer may then be modeled by a barrier potential as above. Electrons may then tunnel from one material
to the other giving rise to a current.

The operation of a scanning tunneling microscope (STM) relies on this tunneling effect. In that case, the
barrier is due to the gap between the tip of the STM and the underlying object. Since the tunnel current
depends exponentially on the barrier width, this device is extremely sensitive to height variations on the
examined sample.

The above model is one-dimensional, while space is three-dimensional. One should solve the
Schrodinger equation in three dimensions. On the other hand, many systems only change along one
coordinate direction and are translationally invariant along the others; they are separable. The
Schrodinger equation may then be reduced to the case considered here by an ansatz for the wave

function of the type: ¥(z, y, 2) = ¥(z)d(y, 2).

For another, related model of a barrier, see Delta potential barrier (QM), which can be regarded as a
special case of the finite potential barrier. All results from this article immediately apply to the delta
potential barrier by taking the limits V5 — 0o, a — 0 while keeping Vpa = A constant.

Problem base questions :

Problem 1.

Consider a particle of mass m moving freely between x = 0 and x = « inside an infinite square
well potential. A X A X

(a) Calculate the expectation values (X),, (P),, {Xz)ﬂ, and {Pz),,, and compare them with
their classical counterparts.

(b) Calculate the uncertainties product Ax, Ap,.

(c) Use the result of (b) to estimate the zero-point energy.
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Problem 2.

Consider a particle of mass m subject to an attractive delta potential V' (x) = —Vp d(x), where
Vo > 0 (¥ has the dimensions of Energy x Distance).

(a) In the case of negative energies, show that this particle has only one bound state; find
the binding energy and the wave function.

(b) Calculate the probability of finding the particle in the interval —a < x < a.

(c) What is the probability that the particle remains bound when F is (i) halved suddenly,
(i1) quadrupled suddenly?

(d) Study the scattering case (i.e., £ > 0) and calculate the reflection and transmission
coefficients as a function of the wave number k.

Problem 3.

A particle of mass m is subject to an attractive double-delta potential V' (x) = —FVyd(x — a) —
Vod(x + a), where ¥ > 0. Consider only the case of negative energies.

(a) Obtain the wave functions of the bound states.

(b) Derive the eigenvalue equations.

(c) Specify the number of bound states and the limit on their energies. Is the ground state
an even state or an odd state?

(d) Estimate the ground state energy for the limits ¢ — 0 and a — oo.

Problem 4.

Consider a particle of mass m subject to the potential

00, x <0,

V(x) = —Vyo(x —a), x =0,

where Fy > 0. Discuss the existence of bound states in terms of the size of a.
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