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dBm
vacurm. As shown in chapter 7, each component of E an
has the form 9
1IE _o .
(:2 ot

2
19B _o ..
o'B n._ ——5 =
VB — gt .__8’2 =0or VB 2 Py

]

2
VzE"‘“OEO_aS—IEE‘ =0 or V
!

Ey

In addition to these wave equations Maxwell’
wave is propagated along Z-axis, we assume solution it 2 - o
Er.0 = Ex) € ~ (@)
B(r,) =By O
Appropriate linear combinations can be formed to give travelling Or 3
wave number kg i1s known from prcccding section but however we as

which may be real or complex. With this assumed Z dependence 0
dimensional form

s of the form

2
.Q._E .a_ZE. - kgz E + 0)2 E =
ox’ E)y2 4
2 2 2 W
JE JE |0  2|o _
or §+——2'+ ___2——k£:|E— (a)L
2 2 2
and a—2+§—%+ %—kﬁ]B = «(b)
ox~  dy c '
Now if Vi is transverse part of Laplacing operator V’, then
2 2 2
v d 9,9
dz ox dy
In these notations equation (3) takes the form ,
2
2, | 2|{|E |
[V“[?"k“]]{ﬁ} )
Now Maxwell’s curl equations for free space are
w
VXE = _ ik (@)
ot L
d
and VXB=],10€03€'- oerB=lziEi- ()
C g

which in terms of components can be written as

o o5, _om,
dy & o
oE, OE, 0B,
% ax o
%, 9 __on,
ox dy ot |
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ust satisfy wave.equation whic}, i oy |
U

l

()

s cquations and boundary conditions must be satisfieg, Ao
. ¢ e

~(2)
tanding waves in the Z-directjq,,
sume that it is unknown pargy,
f fields, the wave equation reduces ¢,

eter
tWo



9B, B, | ap
g) % D n
and % ) f-)jiz g
2 dx C2 ot
wesd o 1 UE,
. . X . ax dy ) Tt
grom the form of exponentia] ™ - ior . ¢

2 ik and 2
1 §) ,k q and e - - 4
Therefore equations (7) lead to - 9z Mpand = — — iy

oE,
—5; 'kk'E.\': IWB, (a)
; oE,
"kxEx"a*y: = 0B, (b)
OE, OE
y :
Cox gy 0B, (c)
dB, .
o " ikBy= - 3K, @
and | 'k*'B“a_xz = —?E, .{b)
aB\' aBt ‘ 0 _
| L x dy R E, -0
Substituting values of B, from (8b) in (92), we get
dB, i k- ox | _ _iog
—37_" k io .
)
-a_§{+&.—a_§£ - 1,—(-'L— lm Ex
Le. ay ® ox ) C2

- ; e, )
ie. E, = {mz 2\&"&’ x a.vx
| o

¢

| | t
Now eliminating B, from (8a) and (9b), we EC ‘. & JE, aB\,X

.Ey:

' L : £ and (9), we get
Similarly eliminating E, and E; in turn from (8) and ( g
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ciromagnetic Theory and Electrodynap,;,
4

El
382 |
BI = 2 [” dx (;2 ay : )
W 2
—3 n]
C
i k aBZ+,(_J.J-£).E—-z-J '--(|3)
B- = N v——'_‘ ar
\) —0;)—)- , {ﬁ ay c
2~ " |
c f/ficient to determinc E, and B; as the appropriage
su :

Equation (10), (11), (12) and (13) show ljlat it is -nts can then be calculated from (g
solutions of the two dimensional wave equation (5). The other Com%i'l‘;;:z walls, such as that shown in ﬁ;
(11), (12) and (13). In general cylindrical guide with perfectly conduc '

9.11, is under consideration, then the appropriate

boundary conditions are that the tangential [N\ =~ _ _ ————— ———-..Z
component of E and the normal component of B
should vanish on the surface of the conductor. The

boundary condition for two dimensional wave

indri ide of arbitrary cros
i llow cylindrical wave gut s
g 211 He Y sectional shapée

equation for E, viz. : :
2
) w 24 s ..(14
V_LE1+ —C'E""kg EZ_O ( )
that the tafigential component of E should vanish on the surface of the conductor requires
Bz I = O ' .“5)
The normal component of B at the surface requires =
where n is unit vector normal the surface ’ B
i-e. , B, (x, y) e'kl’z-'m” n ’.s — O S
) e e e dB,
this condition implies —| =0 ..(16)
P on
|

where d/9x is the normal derivative at the point on the surface. The two dimensional wave cquations (5) for
E, and B, together with the boundary conditions on E, and B, at the surfacc of the cylinder allow only
certain values of axial wave number £, for a given frequency . Because of different boundary conditions
on E, and B, they can not be generally satisfied simultancously. Consequently the ficlds may be divided into
two distinct classes.
T:(-ja.ns;'erse lI]Vlz:jgnetic (TM) Mode. In this case B, = 0 always i.c. 'magnctic ficlds is always
erpendicular to the direction of propagation; < s
zri)lsropsometimes named as electrice)pr; f}aves 0:] gf:ﬁt/l::z.namc ransverse magnetic. These type of wave ot
Substituting B, = 0, equations (10) to (13) take to form
E, = zlkx JE, __ ik, OE, 0
() k2 dx (k,,z-k:) ox ol

—
—

N
c
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E, = -—“._’;kﬂ._._ ()El "kg a& ...(18)

i’ s ol 1t 2
{_(% _kz) (’)"" (kn - k:) Dy
C

£

B, = IO ok, _ io__ IE, .(19)
; - -
v 1_,% 29
[%"k:]‘"z = (ky = k) c” @Y
¢
B, = 0 % __ i o ..(20)
i T LN 5 X
%_k: ¢’ Yo ke k) S
c
e .
where ko = = free space wave number

Thus in 7M mode, all the transverse components of E and B can be expressed in terms of longitudinal

component of the electric field. This component may be obtained by solving the two dimensional wave
cquation (5) for E, viz.

2
v E.+[-“%-kﬁ]E, =0 s

c
ol VIE,+ (ko —k;) E; = 0 |
The boundary condition for this equationis ~ E,lg=0 (1)

(ii) Transverse electric (TE) Mode. In this case E, = 0 always ie. electric field is always

perpendicular to the direction of propagation of the wave, hence the name fransverse electric mode. These
types of waves are also called magnetic type waves or H-waves.

Substituting E, = 0, equations (10) to (13) take the form
iw aBz (0] aB:

E, = _ .(22)
(m_z ,z] o kE-kl O
9 gl
c
g oo 9B o OB ' (23)
! 92_ i 2 o ko —kgz dy
2 B

L .(24)

«(23)

P S

7 — Ky
k(‘

Thus in TE mode all transverse components of Eand B can be expressed in terms of longitudinal

component of magnetic field. This component may be obtained by solving two dimensional wave equation
(5) for B. viz. '
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- 2 o 2|lp =0
vl + 97“"#]3: '
| ¢ 2 0 (2())
V2 B,+ (i~ k) B =
or 1 Pz |
with the boundary condition 28, , . 5
an | of B i$ zcro.
| component ‘
), thi iti res that norms ide reduces to that of fip:
According to equations (22)—(25), this condition ensu tic field in a wave-guide r ndlng
Thus the problem of determining the clectromagne !
one 6F e Al ional wave equation 2 _
solutions of two dimensional \;r;vzc +q(k2—k2)] =0 o [V_ZL + kv 0 (27)
1 o 87/
subject to boundary conditions ylg = 0.and dy/dn ls =0 A o
2 2 2 2 _ kZ+k, Q)
Here k:=ky —k, oF ko = K¢
Equation (28 a) is equivalent to 7—? = —l_i 7\-,32 .
. ( hus the conclusions drawn in the preceding

which is same as equation (11) of preceding section 9.11 T gation between parallel conducting Plancs,

section arequiie general and are not limited to the case of propa in definite cigen values of the paramere
For a given cross section the solution y exists only for a certain dell ) L be oo
Bae = 2 -negative, since roughly spcaking W must be oscillatory
k.. It is easy to sec that the constant k. must be non-negative, \ inder. These will from a s
in order to satisfy required boundary condition on opposite sides of the cylinder. I s ~D.Cf,lrum
of cigen values (k(.z)l and corresponding solutions y; (A = 1, 2, 3) form an orthogona ZCl q = d'lll'crc‘m
solutions are called the modes of the guide. For a given frequency ® the wave number ¢ 18 delermined for

cach valuc of A
+(29)

kD3 = ki = (2n = @/ = k2,
‘.2, therefore we note that for k, > k.or > ®,, the wave number k, is real ; hence waves of
<k, or o<, k, is imaginary which is turn implics the
Pagate and are called cut off modes. The

Since k; = k¢ — k
such modes can propagate in the guide. But if £
attenuation of E and B given by (2) : hence such modes can not pro

frequency given by

(@A = [c] (k,) .(30)

is called cut off frequency. Then the wave number can be written
R e Sy e |
(kh =" Nlw” - () A] (3]

From this it follows that a guide acts a sort of high '

_ E7 pass filter in the senge that onl i that
cmd()f-r frequency can be propagated in t}?e guide. Moreover at any given fre uency ff‘;quc':_m?s grcmcl:cr of
modes can propagate. It is often convenient to choose the dimensions of lhq ide o that ot the '
frequency only the lowest mode can occur. l © guide 5o that at the operating

The velocity of Propagation of the y, ] . 1 '
derivative f ave (ie. group velocity) along e wave guide is given by the

as

_do 9
"t = o © ke +k5)"2
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k |y 2 s
, (kc+ k.) C’l:o C"’: -
agi X
For }r El,lver;l k. : this varies from ¢ toc whcn k, varies from o t
3 0 10 oo,
phase velocity U, m the guide is given by

W ()

D —
k \](u) -, )/c

8

2
Obviously v, > ¢ and becom l oy
il FEEBUD Vclocny ncs mflmte exacﬂy at cut off frequency he energy in the guide is propaga‘cd
TEM W
ectroma nci:l\::esT;zn addition to TE and' T™M modcs, there is a degenerate mode, called the transverse
& (TEM) mode, in which both E,ard B, vanish. If we substitute E,=B,=0in equations

(10)—(13), we note that there is no non-zero component of E or B. This implies that T EM wave can not be
propagated along the wave-guide.

- 9.13. Rectangular Wave Guide

The most corpmo.nly used wave guide is that of rectangular
cross-section having inner dimension a and b as shown in fig.

921

The solution of two dlmcnsmnal wave equation

(VizkH)y =0 N O
can be carried out in rectangular coordinates as follows :
TE Mode. For TE mode E,=0: hence equation (1) 1s to be
written for B, ; which takes the form

The boundary conditions are h

aB
=0
on \
[ - ‘995=0atx‘=0andx=a
ie. ™
0B, _ _

and E;—Oaty—Oandy—b
* We shall solve equation (2) by the method of separation of variab\cs

Therefore writing B (x,y) = X() Y(y) =

where X is a function of xonly and Yis a function of y only.
Susbtituting equation (3)in (2) and dividing by XY, we get
| 1 E) X D Y av . kc -0
X ad y oy’
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2
2 1 Y
13X il=-y37 |
X ox ly. Hence this equajq,

or

In above equation L.H.S. is a func
will be satisfied if both sides are eq

tion of x only, while )
ual to a constant say p L€

RH.S.isa function of y on

2 2
LIX 4l =+p

X ox
2
IX v k2-pHX =0
or 2
X
2
BX 4% =0 ~(4)
= ox :
2 _ 2 _ 2 e 5)
where q fc p
L 3 _ 2
and Y ay
Y 2 ‘
or — tp Y=20 (6)
dy
The solution of equation (4) and (6) are
X (x) = Acosgx + Bsingx «(7)
-(8)

Y(y) = Ccospy + Dsinpy

where A, B, C, D are arbitrary constants.
We have the boundary conditions

_8& = 0atx=0andx=a.
ox
. 0B,
— =0aty=0andy=»b
y T TIEY
These conditions are equivalent to
X =0 atx=0aﬁdx=a
ox -
and %);,=Oaty=0andy=b.-
Differentiating equations (7) and (8), we get
| oX .
Fele —Aq sin gx + Bq cos gx
aY 3
E = =Cpsingy + Dp cos py
Applying boundary condition -g% = 0, we get
' x=d

Bg = 0 .. This gives B = 0

Now applying boundary condition

ox

= 0, we get
X=q

~Agsinga = (
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e r
We must take A #0 since otherwise X =0 and B,=0. Hence
singa = 0 orqa = mw, that is,

mn .
q=" (m integer)

nd p must be restricted to valucs p

(D)

In precisely the same manner We conclude that D=0a = nn/b where 1%
an integer. In this way be obtain the solutions

X (x) = Acos (’—%E}x; Y (y) = Ccos (’—'—E}y ..(122)
where =12, 3 e 1=1,2,300
2 2 m2 n2
and k. =p +qg =T 5+ 2
a b
The solution for B; (x,y) is consequently
B, (x,y) = Bycos ﬂz—{ cos E’—;’l ~(132)
. 2\/2 '
when (kg)mn _ th f_’% + Eb_z ..(13b)
a

Here the indices mn specify the mode. The cut off frequency Wmn is given by

2 2 172
o m (14
Wpn = m& -+ b;x (14)

a :
_Thecasc m=n= 0 gives a static field which

arc represented as TEmn
esents non-trivial solution. 1f a > b, the

The modes corresponding Lo m and n
. hencee the mode TEg repr

does not represent a wave propagation

lowest cut off frequency results for m=1and n=0,
. e T
ie. Wi = — Of ko = — L(15) -
- 10 a ( (..)lO a
ed in most practical situations. The

nant TE mode and is the one us

quations (22)~25) of preceding section by

The mode (TE)o) represents the domi
values E,, E,, By and B, for TE modc may be obtained from €

substituting the solution for B, , which is
B,(r,0).= B.(x.y) ¢
= B,cos _mgf cos Ebl ke o .(16)

ikxz— 1ot

Thus we have
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nm ilc — it \
Ea:.t_njfc_o.Bog;;os-'-nl\:x—Slﬂ"’EZ gz' }
kb “
nmw ,k - it
g = ImT® posin _____m:x cos ——b—x "
] . mmnx nny i :
B =- '”":kg BO simn T cos e
* koa .
inmk, mmx nmy "‘@"“"
B“ - - "12 Bo cos T sin b €
' k.a
For TE mode, these equations yicld . , ‘2
2 4]
=1, n=0k =73
[pul m 02 ]
IE"_

p |I(rz it

. : k i lk Zjor |- .
and- j"B" =T 'a BO if { ) »,,z m : ~(13)
E = 129 Bo sin (_1;5 'k’z—m
The presence of a factor i in B, (and E o) means. that thcre is a spatlal (or temporal) phase difference of n/9

between B, (and E,) and B, in the propagation. . :
™ Mode For TM modc B 0 hence. equanon (1) is. to be written- for E, which takes the form

ﬁ_.+ R E—O el 1L SRR (1"
' : : Bx, ay':. Sy -
The boundary conditions areE Oatx 0, x - a, y=0 andy b
- Solving equatxon (19) as for TE case, wc note that the solunon of cquauon (19) is of 1he form
E (x. y) Eo sm (n_z:,_r] sm(ﬂfix) S - (2
where k and hence @, afe oull ngen by equanons (12b) and (14). This implies that TE and TM modes o
rectangular guide have the same Set of cut oﬁ frequencies. However in thiscasem=1and n=0 represer
non-trival solution since this gives E, =0 and hence all components of E and B will be zero.
It is obvious that in this case the lowest mode has m=n= l and may be represented by TM“ The (

off frequency of lowest mode is given by

L | AN -2 V2 u ey -
m”'=_1tc[i2+—li] =X +% ) e o
o, a b a b e e
Since a < b, therefore the cut off frequency of lowest TM mode is greater than that of the lowest TE mod

2\3172

the factor | 1 + ii The fields E,, E,, B,A.ﬁ B, for TM mode may be obtained -from equat

(17)«22) of preceding Section if we substitute
E, (r,0) =, Ey (x, _)') ef’fﬁj_ifgy conan

e s et - S e
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Applications of Electramag(letic Waves I ! Reflection and Refraction |

or - . E, (i', f) = Eysin ['_"aﬁ]sm{ﬂ_;z} g e

Thus we have e 4
imnk, P & ikz—iot |,

I g [ IS i [ PR2]

kia R N I R e O

m'ltkg EO sin [mnx Cos:l-[.m}aeikgz— w)! |

. . : ; ik 7 — iot

B = - za)nﬂ: E, sin [m__] COS‘[%XX ke |

I

- k. ’be | a -
B = z(x)mt Eo Os[mnx] sm_[%l} ikgz — 100F
y 2 a ,
Ic_ac
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9.14. Circular Wave Guide

rectangular guide is that i
. 1. after the A d th
: vave guide: :.~ular guide and the cogy;
The next most important example O'{1"s includes both the €iret acf between them I:la.l ing, "
bounding surfaces are circular cylinders. 1h ated in the angular sp Cithe, Which
has two concentric cylinder, with the wave propa&t Cage h
two dimensional wave cquation viZ.

2 2 =0 '
(Vi+tk)V ; ves for cases whe
we shall restrict oursel re Crog . (1)
is to be solved in cylinderical coordinates, but here W& &

SQQ“Q
X o ) ; ross-section n
is circular. Let a be the radius of circular cross-se

We have l 92
2 1 Q- r —Q‘ e o )
Vie=|5 or | or 99

‘ . in this case becomes
Therefore two dimensional wave equation (D)n (h;slms

19 (, 9 s wtk y=0
.—r_é;(rarj*'rz-aﬂz

" Whi,

)

» .

If @ s the radius of circular cross-section, then the boundary Condmc.ms o
ay [ for all values of ©
= 0 and oy =0 ok {3)
v I a on | _, 5 , | )
Now let us write Maxwell’s equations in cylinderical coordinates (r, 8, 2). Maxwell’s curl equationg ;; fr
space are
JoB
1 JE :

and V xB ;:2 o7 4

In cylindrical coordinates equations take the form '
19E OE\a (0B OE\a 173 .. OE]A
(r 08 azj”'+(az - arJn’+r ar(’ o) ~ o0 | "
- _a_Bc A aBG A aBZ A
"_[at SO "°+?"‘] |
1 9B, 339] A [BB 0B 1l 3 3B.1
and [— —_—— — Tt _ 2 A 110 rl A
roe o ™7 oz  or J,"r + - [ar (rBg) — 30 ] n,
;I[EA 0Eg A aEZ,\]

=7 o+ =" ng + —
A A A o
: . . A
omparing coefficients of n, , ng and n, on either sides, we get
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% "o -~ | ™
1729 9E,1 __ 9B;
?[a (r Ee) .ae] |
1 aBz aBQ _ 1 BE,
i i
and 9B, 9B, _ 1 9E (5
0z or & ot ’
1[ 9 9B,1 _ 1 9E
F[a (rBg) — ae]‘g ot
But

E(r0z0)=Er0e"
B(r,0,20) = B(r0)e" "
From the form of exponential "~ itis apparent that

d/9z —> ik, and 9/0t— —iot
Substituting these values in (5), we get -

% %% - ik Eg = i B, ...(0) ]
. 9OE, S
ik, E, — 35 = iwBy ...(ii)
4 [i (rEg) — g ] = ioB, ...(i)
rLor 00 _ o
B - .
% %;— — ik, By = '-C‘g—g ...(vi)
.- .. OE i®
ik, B, — Tf = - ? Eg ...(v)
19 oB, i® :
> [—a— (r By) - —56} = - —c-z— E, ...(vi)
Eliminating Be from (ii) and (iv), we get
E = ol

Eliminating Ep from (i) and (v), we get
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392 ‘ © "
aB e — L) ) J !
i < 20 ) _;
B,=+7—5 1| %o cr = o Z

"‘2’ - g
c

and finally climinating E, from (ii) and (iv), Wic get o 9F, X K -a_&j\ S i) \
Be=r—5—7|2 ar T d0 L |
o 2|LC y | B
c * may be obtained frqm B, and EZ_

of field viz. Er Eq ,Br» Do Let us now consider two usyy)

) for E, and B;

It is obvious that &1l the transverse components ' 5
Thus we have to solve two dimensional wave equation ( |
' he form
cases : ) 8), (9) and (10) take t
Case (i). TM Mode. For TM mode B, =0 ; hence equations (7), (8 (
g oo kg %% ...@)
S 1 or
0] 2
— Kk
L G J
gtk 95 ..(b)
0 r 2 20
o 2
2~ , | . L W
| & i} ~(11)
R —— %  ©
rT 2 .00
) () k2 2
7 Tk | €T
c 7
g =0 %
TOT T, 4 or
oW 2] 2 "
— —k | €
[ C \

Obviously in 7M mode all transverse éompdnénts are expressible in terms of E, ; hence we have to solve

two dimensional wave equation for E, ; which is ‘
19 ( 3y, 1), 2.

;5(r$)+:§£ E,+ki E. =0 - - - ..(12a)

- L(12b)

with boundary condition E, = 0 at r = a for all values of §.
Let us solve above equation by the method separation of variables. Therefore writing

E (r,0) = R(n© (@) - . L.(13)
where R (r) is a function of r only, while © () is a function of § only. Substituting E, = © R in (12a) and
5 ’ ' z 4

dividing throughout by R ©, we get

rRror|"or )T ® ? the %0 . | (14
Muliplying throughout by 2, we get |

T 9 (ORY 2, 1 d%e |

Rar(arj+kc —‘6? A1
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vation L.H.S.
“In above €q 1s a function of r only whxle RH.S. isa functlon of 9 only. ThlS is onl)’
pOSSIblc if each side is equal to the same constant say 1’ i.e

1 9’0 _ ,
05 " (162)
at . fié _a’—r. [' 'aa_lf) -'i-"kczrz'.:' "2 .”(17)‘
Equation (16a) may be expressed as LN B
L ngwhn@ o ZAxiS
30’

the solution of equations (16b) is

Fig. 9.13. Circular wave guide. ‘
© = A, cos (n8) + B, sin (n0) ..(18)

Further the relative amplitudes of A, and B, determine. the orientation of the field in the guide and fora -

circular guide and for any particular values of n, the - axcs can always be oriented to make either A, or B,
equal to zero. Let us choose B, equal to zero, so that

® = A,cosnd
Now equation (17a) may be expressed as : : ,
10 ( oR 2 n
r r ( ar]+[kc——r;]R =0 | ...(19)
1 4 oR n . |
or r d (k) [ d (k, r)] - (k, 7 =0 ' ' =420

Equation (20) is a Bessel’s equatlon in terms of (k.r) which has two independent solutions namely Bessel’s
function J,, (k.r) and Neumann’s function N, (kr).

The Bessel’s and Neu'mann’s function [J, (x) and N, (x)] have the following properties :

(i) Atx = 0, the Bessel’s function J (x) is proportional to %" while Neumann'’s function N, (x) becomes
infinite.
(11) For large values of x, J,, (x) and N, (x) approach the values

(x) - \jz Ccos (x— (2n+1) )
N, (x) = \j sin (x— va+1 }

From this it is clear that in a circular gunde where the field must be finite at r = 0, we must use only
Bessel’s function J,, (k.r). Thus the accepted solutlon of equation (10) is

.(21)

= J,, (k) . (22)
Hence : : E, (kcr) = R(r).©(6)
=J, (k.r) A, cos n® = A.J, (k) cos n@ Q%
E,(r 0,2, = Ay J, (k1) cos ng e .(23b
The boundary condmon for TM modeis | | :
-E, L 0. This implies . (kca) =0 . (2
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; i be possible k, =
Equation (24) has infinite number of roots but smce2 for thezpr(;pagaﬂon “.) ¢ pt ]e h&" %
xtreme ¢
should be real i.e. k. should be small K << ko or & .<< e (;: gthel;Wl::c;cal intezesiglv;}frequencieg
will be required thercfore only first few roots of equation (24) will be 02 P © 1€ firgy

foy
roots J, (x,,,) = 0 are given below
xg = 2405 ; xyy = 38325 xp = 5135 }
xop = 55205 x5 = 7.016; x5 = 8:417 '_.(25)

The various TM modes are represented by TM, ,
there is no root xpg or (k. @)oo - 7Moo wave can not exist.

Physically n represented the number of cycles of variation of E, fo :
cylinder. The subscript m indicates the number of zeros of electric field along a radial Patll from the ceng
to the inside surface of the guide wall. Thus if we let x,,, be the mth value of x for which J, (x) = : the;
the cut off value of . is given by

TMy;, , etc. i.e. in general TM,,, . It is obvious that sin

und as 0 varies around the ¢,

. ~(26)
Hence cut off wavelength is given by
~(27)
the phase velocity is
...(28a)
..-(28b)

It is obvious that phase velocity is greater than the s

eed of light, , :
propagation of wave is P ght, and group velocity or velocity of

_odo _ 9 d 2
vZ - akg - akg (Cka) == -a—k; [C (kg +kc2)1/2]
k
= — ke
V(k:+kcz)
- ko - ()] (29)

For a given k., this values varies from o to ¢ when k. varies from o to oo
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Substituting solution for E, from (23b) and using
2
- k= kg -k} = (@ /) —k,
the transverse field components may be expressed from equation (11) viz.

_‘..“&“m

ik .
E, = k‘ﬁ A,J, (k.r) cos n@ ke ...(a) “
E, = _iknn . ikgz — iot .
0 =— —— AJ,(kr)sinnBe ...(b)
g ..(30)
[ R
. Br = + -k—'i% Aan (kcr) Sin ne e'kRZ ot ,,_(C)
W i
By = 2 Ay’ (kr) cos n® &<~ .(d) |
(4 /

where J,," represents derivative of J, with respect to 7.
Case (ii). TE Mode. For TE mode E, = 0 ; hence equations (7), (8), (9) and (10) take the form

1 oB :
E, = — i .2 (@]
(@) -k, 9@ @
: 3B
Eo = L z ...(b)
P D -KD O - .31
ik, - oB
Br = £ - z (C)
(/¢ -k O
ik, dR, )

By =5
[(w/cH -k 98 ¥
Obviously in TE mode all transverse components E, , Eq , B, , By are expressible in terms of B, , hence we
have to obtain the solution for two dimensional wave equation (1) for B, . The solution is obtained exactly

as in 7TM mode we get - " _
: , - B,(rn6) = A,J, (k.r) cos nB ...(32)
The boundary condition for TE mode is 0B,/or = Oatr = afor all values of 8.
. : oJ,kn) | - ,
This implies —ay 1 =0 or J,(ka) =0 ..(33)
‘ : r=ua ' )
The derivative J, (k.r) with respect to r of the Bessel function may be obtained from
- 3 J(kcr) n -
Sy (ker) = or e ',:. Ju (k) =T 41 (ker) (34
C

The first few roots of J', (Xpm) = 0 are -
X = 3832, x;, = 1842, x5 =305
X2 = 7-016, X122 = 5-330, Xy = 671 } (3

If we let x,,, by the m™ value of x for which J,’ (x) = 0, then cut off value of k_ is given by

' xnm
ka = Xnm ork, = . CHC (3
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Hence cut off wavelength A = ‘27{“ =T _ ) ( Sb)
¢ i off wavelength of various modeg,

he cut
et e obtained for TM mode except for lhi_

Where x,,, are given by equation (35). Thus we can caliss thos
s

equations for phase velocity and group velocity are the same 2
use of equation (35) for x,,, in place of equation (25)-

~ The field components for TE mode may by expr essed as ik z— it

E, =0 and B, = Aen (k.r) cOS no er 1
n . ik z—iof
E =- 1—0—32 A, J, (k.r) sin nde )
k. r :
0 ) n0 eik - iot B |
By = =23 Ada k) cos : .3)
' c
ke k2 - i0of
B, = l—k% A, (k.r)cosnBe ¢
S
‘ ' . ik 7 — st
By = - ig-'l A,J, (k.r) sinn® P
k2

9.15. Resonant Cavities

_ If the cylindrical wave guide of finite length has its end faces then it forms what is know'n as resonap;
cavity (or cavity resonator). Such cylindrical cavity resonator may be re.:ctangular or c1rcplar Cavity
resonator depending upon whether the cross-section of the cavity resonator is rectangular of circular, We
shall restrict ourselves to case where cross-section is rectangular. We shall assume that: .

(1) the end faces are plane and perpendicular to the-axis of cav?t}’-- o

(i) the walls are perfectly conducting. IS .

(iii) the interior of cavity is vacuum. . B s ' '

An electromagnetic wave propagating along the axis of a cavity will be reflected back and forth from
the end faces, thus giving rise to standing wave pattern. If r is the amplitude of reflection coefficient, thep
the amplitude of transverse electric field is r times of the amplitude of incident wave ; consequently the
amplitude of resulting disturbance, obtained by superposition of incident and reflected waves, will vary
from something proportional to (1 +7) ; where the two waves add, to something proportional to (1 -7);
where they oppose each other. The ratio of maximum to minimum E or el is czilied thevstanding wave
ratio in voltage. We see that it can go to unity r =0 when there.is no reflection to.r =
reflection. For metallic reflection which we shall assume r=-

1. when there is perfect
The points along the guide where the resultant tranévcrse el

L, s0 that the standing wave ratio is infinite.
ectric field is maximum are called standing

| six ol quencies of the cavity. Consid
Case (i). TE Mode. In this mode E, = 0 let us py planes x=0,x=a,y=0,y=b,z=0,z=d
E<E, + E, (

where E, = G+ E) - o
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{ Solve 4, prabloms ;= , A9

b Mkt wwad Lo g b o’ﬁ a me::«‘wna—bda“ guid_z Ll
Hat e onergy af eleclnowa\g/najr'c_ radiation whose ‘frw\
Spaca RY V'S (lma.&h It 2.0 am, froweld dpeom the &w’ de =y

05 1 of Hho Spad of Lpht?

> =

Fore  droms verwe .glechu‘c ‘Nawved Pemfm;{-rzr FMP”‘%“H% N
RQGF’.&YZ? Ware poame guidi o iHn P'@‘f“HEf c_mnd,uc\q*a Wadly,

Find |
W Hw end ﬁ tyene Jlﬁ*&ﬂ.
Q‘g "H\L maafr\.v. He :ﬁt“'eicl mdue Hom .
Q"\Q Tha VQ,loc}-!—Z_ w?ﬁ\ wkn‘c_L ghm%y e Hramemittod. aum?(

Raw& V= | | | | |
Satya }DMKNL E'Eb_ahw ‘n—\aa'»;mh“c Mnﬁ ond
| Elechwo dﬁ'\\éﬂ‘niﬁgj
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