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Equation of transverse wave in a string:

Consider a thin, flexible string (piano wire, rope, etc.) of length L, linear mass density .,
under tension T, which is fixed at both ends as shown in figure 1. Two questions we might ask

are whether waves can exist in such a system and if so what is the form of the function yi(x.1)
which describes the propagation of the wave?
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Figure 1

If a system will support waves, then the equation describing the behavior of the system will
have the form of the classical wave equation,
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Therefore, to answer the first question posed above, we need to derive the equation of motion for

our string and compare its form to that of equation (1). To answer the second question, we need
to look at the effect the fixed ends have on waves traveling down the string. In what follows we
will answer these questions.

Consider a small section of the siring dm which has been displaced in the vertical direction as
shown in figure 1a. The displacement is y = y(x.t). We will assume that the displacement is
small and that & and ¢ are everywhere small so that we can use the approximations cos 6 =

cos =1, B==sinB =tan B and ¢ = sin ¢ =tan ¢. The element dm is acted upon by two
forces, the tension T at both ends. (Since the string is thin, gravitational forces can be
neglected). The forces in the horizontal and vertical directions are

Fy = Tcos¢g - Tcos B (2a)

F}. = Tsinf - Tsing (2b)
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Since cos 0 = cos ¢ = 1, the horizontal forces cancel leaving a net force only in the y direction.

Applying the small angle approximation to equation (2b) yields

Fy = Tftan® - tan¢) )
But tan 0 = - dy/dx Ix and tan ¢ = - dy/9x Ix + aAx. Substituting these expressions into equation
(3) gives
ay dy )
F, = T{{-—=| -|-—=< 4
Y (( X X X X+ Ax ( )

To make the notation simpler, we define a function g(x) = dy/dx lx. Substituting this into

equation (4) and rearranging terms yields

Fy = Tlag(x + Ax) - g(x)] )
Applying Newton's second law gives

ma, = T[g(x +Ax) - g(x)] . (6)
But m= pAx and ay= d2y/at2 . Substituting these expressions into equation (6) and

rearranging terms yields

2
g(x + Ax) - g(x) _&B_y: 0 G,
AX T a2

gx +Ax) —g(x)  oag(x) a%

Realizing that AX == < 32 allows us to rewrite equation (7) in its final
form,
-
Py wdy _ . (8)
ax2 T 2

If we let u/T = 1/v2, then we see that the equation governing the motion of the string has the
same form as the classical wave equation. Therefore, waves can exist in our system. The waves
will travel with velocity v = (T/x)1/2 and the function y(x.t) will be numerically equal to the y

displacement at a time t of a point on the string at position x.

Now that we know that waves can exist in our system, we can turn our attention to the
question of the form of the function y (x,t). The fact that the ends are fixed means that the y
amplitude must always be zero at the ends. Therefore, only those functions for which y (0,t) =0
=y (L.t) are suitable solutions. It can be shown by substitution that functions of the formy = A
sin (Kx = wt) and y = B cos (Kx + wt) [where K(wave number) and 2rt/A. and o (angular

frequency) = 2nrv = v K], are solutions to equation (8). However, since the functions y = Bcos
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(Kx + ot) cannot always be zero when x =0 we can eliminate that set of functions. To
determine the form of the function y (x.t) for our system we must use waves of the form y=A
sin (Kx = mt).

The function y; = A sin (Kx - wt) represents a continuous sine wave traveling to the right
down the string, and y2 = A sin (Kx + wt) represents one traveling to the left. If these waves are
perfectly reflected at the ends, we have two waves of equal frequency, amplitude and speed
traveling in opposite directions on the same string. The principle of superposition of waves
states that the resulting wave will be the algebraic sum of the individual waves,

y = y; +y2 = Alsin(Kx - ot) + sin(Kx + wt]] :

or using the trigonometric identity for the sum of the sines of two angles (sin B + sin C = 2 sin
1/2(B+C) cos1/2(C-B)), we obtain

y = 2 A sin Kx cos mt .9

This function obviously satisfies the boundary conditions at x = 0, but will only satisfy the
boundary condition at x =L when K = n/L (where n = 1.2.3...). Limiting the values of K to
only certain values also limits the wavelength, frequency and speed of the waves to certain
discrete values. Therefore, unlike traveling waves on an infinite string which can have any
wave- length or frequency, waves on a bounded string are quantized, restricted to only certain
wavelengths and frequencies. To note this quantization, equation (9) can be rewritten as

yn = 2A; sin KX cosmpt (10)

Where K, = mn/L, o, = K,v = %

VT/u and n = 1,2,3,...

Equation (10) is the equation of a standing wave. Note that a particle at any particular point
X executes simple harmonic motion as time passes and that all particles vibrate with the same
frequency. Note also that the amplitude is not the same for different particles, but varies with the
location x of the particle. The amplitude, 2 A, sin KX, has a maximum value of 2A,, at
positions where Kx = n/2, 37/2, 5x/2 etc. or where x = A4, 3A0/4, 50/4, etc. These points are
called antinodes and are spaced one half wavelength apart. The amplitude has a minimum value
of zero at positions where Kx= 1, 27t , 3w , etc. or x = A/2,,3A/2, 2}, etc. These points are

called nodes and are also spaced one half wavelength apart.

Finally, it should be noted that although equation (10) is a form of wave which can exist in
the bounded string system, it is not the most general form. The most general form is

(agcos mut + By sinpt) . (11)
1

)"n(X, t) =

nMa

n
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Now that we have determined that waves can exist in our system and how they can be
represented mathematically, we might ask what we would expect to see if we tried to create the
waves in an actual string. Consider then a string fixed at both ends which is being driven by a
force F cos wt. If the driving frequency is such that the distance L between the ends is neither an
integral or half-integral number of wavelengths, the initial and reflected waves will be "out of
phase" and will destructively interfere with each other. No clear pattern will be set up. If
however the string is driven with a frequency near wp so that L is an integral or half-integral
number of wavelengths, the initial and reflected waves will be "in phase" and will constructively
interfere. The standing wave yp(x,t) will be produced and will attain a large amplitude. If n=1
then L = A/2 and the string is said to be vibrating at its fundamental frequency. This is the
lowest frequency for which a standing wave pattern can be set up in the string. If the string is
driven at a frequency which an integral multiple of the fundamental frequency, standing waves
with different patterns will be set up. The patterns for the first four frequencies are shown in

figure 2.
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When the string is driven at one of its natural frequencies and its amplitude is near maximum

it is said to be in resonance. A plotof ly2l vs.® is shown in figure 3. Such a graph is called a
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resonance curve. Near resonance the energy transfer (from driving mechanism to string is at its

most efficient level.

Finally it should be noted that if the string is plucked rather than driven by a periodic force,
then in general the response y(x,t) will not be a single natural frequency but a sum of many
natural frequencies.

Ya(X, t) = z (Apcos mut + By sin mgt) sin Kpx . (1D

n

The observed pattern is very complicated in general. However, it is possible to pluck the string
so as to have one natural frequency dominate.
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Figure 3
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4. Solving the 1D Homogeneous Wave Equation with Separation of Variables

We now want to solve the wave equation in 1 spatial dimension (1-D), equation (17). This
equation governs wave propagation in a 1-D medium, such as a string or a wire.

Partial differential equations such as equation (17) are usually not solved directly, but are
transformed into other equations that can be solved. Usually they are transformed first into a
set of ODEs, one for each free variable. For the 1-D wave equation, therefore, we'll expect two
equations, one in x and one in . The method we're going to follow now is called the method of
separation of variables.

Equation (17) can be separated into these two constitutive equations by using the method
of separation of variables in the following way. Let us assume that the solution can be written
(as we know it can for a string) in terms of the product of two functions, one in = and the other

in ¢, in the following way:
y(x,t) =Y (x)T(2) (20)
Y (x) and T'(t) are the unknowns we wish to find and equation (20) is a a kind of trial solution

and we'll see if it works. To substitute equation (20) into equation (17) we’ll first need the

space and time derivatives of 3:

(TN 4 BN 4 )

52%-(:2, t) _ T(t)a Y(I) _ T )dQY(I) 21)
Wnt) _ ai;f) v @

323; (x,t) 32T (t) d*T (t)

—e - = Yi(x) =Y(z)—— T2 (22)

Note that we've replaced the partial derivatives on the right-hand side with total derivatives
because they are derivatives of functions of a single variable. Substituting equations (21) and
(22) into equation (17) we get:

d2T(t) d Y(:r)

Y(z) = T(t)

which upon rearranging yields:
1 1 d*r@) 1 dY(x)
c2T(t) dt2 Yiz) dx2
Note that the left-hand side of equation (23) is just a function of ¢ and the right-hand side is

(23)

only a function of .

Now, comes the key step. It's simple, but you have to pay attention. How can a function
of £, which in principle could be changing arbitrarily in time, be equal to a function of z that
may be changing arbitrarily in space? Well, to make a long story short, the only way is if both
sides of equation (23) are equal to the same constant which is called the separation constant.

For a reason that will become apparent later, let’s let that constant be called — &2, so

1 1 dT 22
2T () di? '
1 d*Y(x) 2
Yix) dr2 '
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which after a little rearranging can be rewritten as:

dz( )+k2Y( ) = 0 (24)
d? d?
j;f’ +PKT() = 0= ;( ) 4 w?T(t) = (25)

where the latter result in equation (25) holds because w = ck.

Equations (24) and (25) are the two ODEs whose solutions, Y (r) and T'(f), can be substi-
tuted into equation (20) to give a solution to the PDE, the wave equation given by equation
(17). Comparison of equations (24) and (25) with equation (6) reveals that both of these equa-
tions are simply Helmholtz equations, which we know how to solve because of their role in the

SHO. Their solutions, therefore, are simply:

Yiz) = Acoskzr+ Bsinkz (26)
T(t) = Creoswt+ Dsinwt (27)

where A, B, C, and D are arbitrary constants. You can see why we defined the separation
nstant as —k? because doing so yields equation (26) where k plays the role of wavenumber
as we have defined it previously.

The boundary conditions allow us to find A as well as k and, hence, w as we will now show.
The initial conditions will specify the products BC and BD. This is discussed further in the
next section.

Now, let’s apply the boundary conditions. Assume that the string is clamped both at both
endss = 0 and x = a. The boundary conditions, therefore, are y(0,#) = y(a,f) = 0 or
equivalently ¥ (0) = Y(a) = 0, so using equations (26) and (27) we see that:

0 = Y(0)= Acos(0) + Bsin(0) = A=0 (28)

0 = Y(a) = Bsinka = k = %sin_L(D) =k, = %, (29)
where n is an integer. Remember that the expression sin_L(D) should be read as the angle(s)
at which sine is zero; which is just multiples of .

We see, therefore, that we've established that there are a countably infinite number of
allowable separation constants %k indexed by the number 7, that we recognize as the mode
number or quantum number as discussed above. In section 1, we established that &k, = nm/a
based on purely physical considerations, here the reasoning was more mathematical but the
result is the same. We see now that:

k‘n:E:E wﬂ:dgn:E: (30)
An a a
which is the same as equations (10) above. You can see through equations (28) and (29) how
the boundary conditions determine the frequencies of oscillation in practice.
The final solution y(x, £) is a linear combination of all of the solutions indexed by n:

oo

oa g
yle t) = ZJR T, t) = Z Yo (2)T, () = Z B, sinky,x (Cy, cosw, t + Dy, sinw,t) (31)
n=1 n=1 n=1

o
= Z sin bz (A}, coswyt + By, sinwyt) = Z C), sink,x (sin{wnt — ¢ ) (32)




where we recombined the three arbitrary cmnstants into two (A!, = B,C, and B}, = B, D,) and
also rewritten in terms of a phase shift ¢, which we will reference in the discussion of energy
below. This reproduces the physically motivated equation (5) above. As before, the initial
conditions will determine the coefficients (A7, B!) or (CY, ¢).
5. Application of Initial Conditions

For a string clamped at both ends, the the solution for displacement y(x,t), dropping the

primes on the coefficients, is:

s u)
ylz, t) = Z sink,x (A, coswt + B, sinwt), (33)
n=1
where the coefficients 4, and B, depend on how the string is set into motion, i.e., on the initial
cnditions, and k, =nm/L and w, = ck, where L is the length of the string and ¢ is the speed
of propagation of waves on the string.
If f(x) and g(x) are the initial patterns of displacement and velocity imparted to the string,

then from equation (33) we see that:

[nu) o0
ylz,0) = f(x)= Z Ap sinkyr = Z @y Sin kT, (34)
n=1 n=1
s u] s a]
v(r,0) =5(z, 00 = g(z)= Z wy By sinky,x = Z by, sin ky, . (35)
ﬂ:]. ﬂ.:]_

The final equality in equations (34) and (35) is just the expansion of f(x) and g(z) in a Fourier
Series. In both cases, the Fourier Series is only a sine-series because the boundary conditions
require that the function go to zero at the end-points (x = 0,z = L). Asusual, the coefficients

in the Fourier Series are given by:
2 L
i == f () sin(knz)de, (36)
0

L
= 12_}./0 gl(z) sin(ky, z)dr, (37)

Here the constant in front of the integral is 2/L rather than 1/L because of interval we're
cnsidering goes from 0 to L rather than — L/2 to L/2. Comparison of equations (34) and (35)
with (36) and (37) reveals that:

L
A = aﬂ=% f £ (z) sin(k,z)d, (38)

B, = u)n anL_[ glx) sin(ky x)dr. (39)

These equations together with equation (33) give the solution to the problem with the initial

omnditions imposed.
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